Abstract:
A system includes a memory configured to store data associated with a service that is available. The system also includes a microphone associated with an acoustic space and configured to receive an audio input produced by a person. The system further includes a sensor located within the acoustic space and configured to detect vibrations produced by the person. The system includes a processor coupled to the memory, to the microphone, and to the sensor. The processor is configured to conditionally authorize execution of the service requested by the person, the service conditionally authorized based on the audio input and the vibrations.
Abstract:
A method for multi-channel echo cancellation and noise suppression is described. One of multiple echo estimates is selected for non-linear echo cancellation. Echo notch masking is performed on a noise-suppressed signal based on an echo direction of arrival (DOA) to produce an echo-suppressed signal. Non-linear echo cancellation is performed on the echo-suppressed signal based, at least in part, on the selected echo estimate.
Abstract:
A vehicle includes an interface device, an in-vehicle control unit, a functional unit, and a processing circuitry. The interface device receives a spoken command to identify an in-cabin vehicle zone of two or more in-cabin vehicle zones of the vehicle, and receives background audio data concurrently with a portion of the spoken command. The in-cabin vehicle control unit separates the background audio data from the spoken command, and selects which in-cabin vehicle zone of the two or more in-cabin vehicle zones is identified by the spoken command. The functional unit controls a function within the vehicle. The processing circuitry stores, to a command buffer, data processed from the received spoken command, and controls, based on the data processed from the received spoken command, the functional unit using audio input received from the selected in-cabin vehicle zone.
Abstract:
A multichannel acoustic system (MAS) comprises an arrangement of microphones, loudspeakers, and filters along with a multichannel acoustic processor (MAP) and other components to together provide and enhance the auditory experience of persons in a shared acoustic space such as, for example, the driver and other passengers in an automobile. Driver-specific features such as navigation and auditory feedback cues are described, as individual auditory customizations and collective communications both within the shared acoustic space as well as with other individuals not located in the space via enhanced conference call facilities.
Abstract:
A multichannel acoustic system (MAS) comprises an arrangement of microphones and loudspeakers and a multichannel acoustic processor (MAP) to together enhance conversational speech between two or more persons in a shared acoustic space such as an automobile. The enhancements are achieved by receiving sound signals substantially originating from relatively near sound sources; filtering the sound signals to cancel at least one echo signal detected for at least one microphone from among the plurality of microphones; filtering the sound signals received by the plurality of microphones to cancel at least one feedback signal detected for at least one microphone from among the plurality of microphones; and reproducing the filtered sound signals for each microphone from among the plurality of microphones on a subset of loudspeakers corresponding that are relatively far from the source microphone.
Abstract:
A method includes, while operating an audio processing device in a use mode, retrieving first direction of arrival (DOA) data corresponding to a first audio output device from a memory of the audio processing device and generating a first null beam directed toward the first audio output device based on the first DOA data. The method also includes retrieving second DOA data corresponding to a second audio output device from the memory of the audio processing device and generating a second null beam directed toward the second audio output device based on the second DOA data. The first DOA data and the second DOA data are stored in the memory during operation of the audio processing device in a calibration mode.
Abstract:
A system includes a memory configured to store data associated with a service that is available. The system also includes a microphone associated with an acoustic space and configured to receive an audio input produced by a person. The system further includes a sensor located within the acoustic space and configured to detect vibrations produced by the person. The system includes a processor coupled to the memory, to the microphone, and to the sensor. The processor is configured to conditionally authorize execution of the service requested by the person, the service conditionally authorized based on the audio input and the vibrations.
Abstract:
A crosstalk cancellation technique reduces feedback in a shared acoustic space by canceling out some or all parts of sound signals that would otherwise be produced by a loudspeaker to only be captured by a microphone that, recursively, would cause these sounds signals to be reproduced again on the loudspeaker as feedback. Crosstalk cancellation can be used in a multichannel acoustic system (MAS) comprising an arrangement of microphones, loudspeakers, and a processor to together enhance conversational speech between in a shared acoustic space. To achieve crosstalk cancellation, a processor analyzes the inputs of each microphone, compares it to the output of far loudspeaker(s) relative to each such microphone, and cancels out any portion of a sound signal received by the microphone that matches signals that were just produced by the far loudspeaker(s) and sending only the remaining sound signal (if any) to such far loudspeakers.
Abstract:
A vehicle includes an interface device, an in-vehicle control unit, a functional unit, and a processing circuitry. The interface device receives a spoken command to identify an in-cabin vehicle zone of two or more in-cabin vehicle zones of the vehicle, and receives background audio data concurrently with a portion of the spoken command. The in-cabin vehicle control unit separates the background audio data from the spoken command, and selects which in-cabin vehicle zone of the two or more in-cabin vehicle zones is identified by the spoken command. The functional unit controls a function within the vehicle. The processing circuitry stores, to a command buffer, data processed from the received spoken command, and controls, based on the data processed from the received spoken command, the functional unit using audio input received from the selected in-cabin vehicle zone.
Abstract:
A multichannel acoustic system (MAS) comprises an arrangement of microphones and loudspeakers and a multichannel acoustic processor (MAP) to together enhance conversational speech between two or more persons in a shared acoustic space such as an automobile. The enhancements are achieved by receiving sound signals substantially originating from relatively near sound sources; filtering the sound signals to cancel at least one echo signal detected for at least one microphone from among the plurality of microphones; filtering the sound signals received by the plurality of microphones to cancel at least one feedback signal detected for at least one microphone from among the plurality of microphones; and reproducing the filtered sound signals for each microphone from among the plurality of microphones on a subset of loudspeakers corresponding that are relatively far from the source microphone.