Abstract:
A solar cell includes a photoelectric converter having n-type regions and p-type regions alternately arranged in a first direction on a back surface and an electrode layer provided on the back surface. The photoelectric converter includes a plurality of sub-cells arranged in a second direction intersecting with the first direction and an isolation region provided on a boundary between adjacent sub-cells. The electrode layer includes an n-side electrode provided on the n-type region in the sub-cell at the end of the sub-cells, a p-side electrode provided on the p-type region in the sub-cell at the other end, and a sub-electrode provided over two adjacent sub-cells. The sub-electrode connects the n-type region provided in one sub-cell of the two adjacent sub-cells to the p-type region provided in the other sub-cell.
Abstract:
A solar cell includes: a semiconductor substrate of one conductivity type; a first semiconductor layer of the one conductivity type on the semiconductor substrate; a second semiconductor layer of the other conductivity type on the semiconductor substrate; an insulation layer between the first and second semiconductor layers in an area where the first and second semiconductor layers layer overlap each other; a first region where the first semiconductor layer is joined to the semiconductor substrate; a second region where the second semiconductor layer is joined to the semiconductor substrate; and a third region, which is a part of the first region, where the insulation layer is provided. The first region includes first finger sections and a first busbar section. The second region includes second finger sections and a second busbar section. At least a part of the first busbar section is provided in the third region.
Abstract:
A manufacturing method for a solar cell is provided. The method includes: preparing a photoelectric converter which includes a light receiving surface and a back surface opposed to the light receiving surface and has n-type regions and p-type regions alternately arranged in a first direction on the back surface; forming a groove which is extended in the first direction on the light receiving surface after an electrode layer is formed on the n-type regions and the p-type regions; and dividing the photoelectric converter into a plurality of sub-cells along the groove.
Abstract:
A solar cell includes: a base substrate that has a principle surface; a first semiconductor layer provided in a first region on the principle surface; a second semiconductor layer provided in a second region on the principle surface; an n-side electrode provided on the first semiconductor layer; a p-side electrode provided on the second semiconductor layer; and grooves that separate the n-side electrode and the p-side electrode from each other. The respective widths of the grooves in a direction in which the n-side electrode and the p-side electrode are spaced apart are set to be wider in the outer peripheral region than in the inner region.