Abstract:
An earthquake detection system includes an earthquake data receiving module, for receiving a plurality of earthquake data and generating an earthquake parameter according to the plurality of earthquake data; a threshold value setting module, for setting an earthquake threshold according to the earthquake parameter; and an earthquake detector, for determining whether a new earthquake data belongs to an earthquake event according to the earthquake threshold when the new earthquake data is received, in order to generate a determination result; wherein the threshold value setting module further adjusts the earthquake threshold according to the determination result.
Abstract:
The vertical vibration isolation system of the present invention includes a bearing base, a guide rail assembly and a plurality of buckling elements. The bearing base has an upper platform that can move along a vertical direction. The guide rail assembly surrounds the bearing base and has a plurality of arc-shaped sliding channels. The top portion of each buckling element can move with the upper platform, while the bottom portion of each buckling element is slidably connected to the corresponding arc-shaped sliding channel. The vertical displacement of the upper platform would cause different degrees of buckling of the buckling elements and also induces sliding motion of the bottom portion of the buckling elements along the arc-shaped sliding channels. Accordingly, the vertical vibration isolation system can provide nonlinear restoring force by buckling and sliding mechanisms so as to exhibit vertical vibration isolation effect.
Abstract:
An earthquake early warning method for an earthquake detecting system includes utilizing support vector regression (SVR) method to build an earthquake detecting model according to the a plurality of vectors, wherein each of the vectors is corresponding to an earthquake information and a ground motion intensity; detecting a new earthquake information of a new earthquake and generating a specific vector according to the new earthquake information when the new earthquake occurs; and predicting a new ground motion intensity of the new earthquake according to the specific vector and the earthquake detecting model.
Abstract:
An earthquake alarm broadcasting equipment for an earthquake detecting system includes a receiver for receiving a detection result from the earthquake detecting system, wherein the detection result at least indicates a level of earthquake intensity, a memory device for storing a trigger level, a use scenario set by a user and a contingency measure corresponding to the use scenario, a processor coupled to the receiver and the memory device for generating a control signal according to the detection result, the trigger level and the contingency measures, and a functional module coupled to the processor for broadcasting an earthquake alarm and the contingency measures to the user.
Abstract:
The present disclosure provides an earthquake warning method. The earthquake warning method includes deploying a set of seismic device in a zone according to a criterion to detect an earthquake, generating a first earthquake warning signal when the earthquake is detected, receiving the first earthquake warning signal and a second earthquake signal; executing an decision determination according to the first earthquake warning signal and the second earthquake signal; sending first earthquake warning signal or a second earthquake signal according to the decision determination and broadcasting an earthquake warning.
Abstract:
An earthquake early warning method for an earthquake detecting system includes utilizing support vector regression (SVR) method to build an earthquake detecting model according to the a plurality of vectors, wherein each of the vectors is corresponding to an earthquake information and a ground motion intensity; detecting a new earthquake information of a new earthquake and generating a specific vector according to the new earthquake information when the new earthquake occurs; and predicting a new ground motion intensity of the new earthquake according to the specific vector and the earthquake detecting model.
Abstract:
A method of multi-triggering includes calculating a specific distance according to a plurality of parameters, deploying a plurality of earthquake detectors used for detecting a vertical acceleration of a surface vibration of the earth, and determining whether an earthquake happens or not according to the plurality of earthquake detectors.
Abstract:
A method of multi-triggering includes calculating a specific distance according to a plurality of parameters, deploying a plurality of earthquake detectors used for detecting a vertical acceleration of a surface vibration of the earth, and determining whether an earthquake happens or not according to the plurality of earthquake detectors.
Abstract:
An earthquake detection system includes an earthquake data receiving module, for receiving a plurality of earthquake data and generating an earthquake parameter according to the plurality of earthquake data; a threshold value setting module, for setting an earthquake threshold according to the earthquake parameter; and an earthquake detector, for determining whether a new earthquake data belongs to an earthquake event according to the earthquake threshold when the new earthquake data is received, in order to generate a determination result; wherein the threshold value setting module further adjusts the earthquake threshold according to the determination result.
Abstract:
A method of determining an earthquake event for an earthquake detecting system includes retrieving at least one initial wave characteristic related to each earthquake data among a plurality of earthquake data; utilizing a support vector classification (SVC) method to establish an earthquake determination model according to the initial wave characteristic; and determining whether new earthquake data belong to an earthquake event or a non-earthquake event according to the earthquake determination model when the new earthquake data are received.