Abstract:
A system and method for providing electromagnetic imaging through electroquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of capacitive sensor electrodes that source electric fields that interact with the sample, and wherein the electrodes are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the electrodes are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.
Abstract:
A system and method for providing electromagnetic imaging through electroquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of capacitive sensor electrodes that source electric fields that interact with the sample, and wherein the electrodes are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the electrodes are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.
Abstract:
A system for providing electromagnetic imaging through magnetoquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of inductive loops that source magnetic fields that interact with the sample, wherein the inductive loops are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the inductive loops are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.
Abstract:
A system for providing electromagnetic imaging through magnetoquasistatic sensing contains an electromagnetic sensor for imaging a sample. The electromagnetic sensor contains drive/sense electronics and a pixelated sensor array having an array of inductive loops that source magnetic fields that interact with the sample, wherein the inductive loops are individually drivable by the drive/sense electronics in a coordinated manner to establish a desired temporal and spatial pattern in which electrical properties of the inductive loops are used to generate an image. Other components of the system include a precision motion controller, sensor head and associated electronics, and a computer for performing data acquisition and signal inversion.