Abstract:
An electronic welding station suitable for use with a dedicated power supply or for use in a system wherein a plurality of electronic welding stations are powered from a central power supply. The welding station provides for a positive ground mode, a negative ground mode, and two AC output modes of operation. Most components are used for all modes of operation. The main transistor bank (57) and an auxiliary transistor bank (64) are used in an emitter follower configuration for negative ground mode, a common emitter configuration for positive ground mode, and, in conjunction with an inductor/transformer (67), in a push-pull configuration for both AC output modes of operation. The inductor/transformer (67) is configured as an inductor for DC output operation and, by the insertion of a plug (67E), as a transformer for AC output operation. Selection of the positive ground mode, the negative ground mode, or an AC output mode is achieved by the use of a multi-pole switch (25) and a jumper (90). The result is an extremely versatile electronic welding station.
Abstract:
An automatic braking and speed control for a device driven by an electric motor. A controller provides a pulsed output voltage having a pulse width dependent upon the load seen by the motor (16). When the drive pulses are present two diodes (52,54) and a transistor (66) serve to maintain a power transistor (56) in the off condition. When the controller is not providing drive pulses and the motor (16) is being turned by the momentum of the mechanical device or by some outside force, such as gravity, the motor (16) functions as a generator and turns on two transistors (56,67) so that two resistors (51a,51b) apply a load to the generator (16). This provides a braking action between the output pulses so that the net speed of the motor (16) and its associated mechanical device is more dependent upon the output pulses provided by the controller. A shunting diode (42), in conjunction with two resistors (51a,51c) provides a braking mechanism in the event that the motor (16 ) should begin turning in a direction reverse to that desired. A switch (64) allows reversing the polarity of the voltage provided to the motor (16) so that the motor (16) may be made to run in a clockwise or a counterclockwise direction, as desired. The result is an apparatus which can be easily retrofit onto existing systems so as to provide for automatic braking and improved speed control for a device driven by an electric motor.
Abstract:
A method for automatically tracking the joint between a first component and a second component, or the edge of a component, a welding operation. A preliminary path is defined for the joint or edge (703), a welding torch (100) is moved along the preliminary path while an arc welding current is provided to the welding torch. The welding torch is moved slightly to a first side (705A) of the preliminary path and then to a second side (705B) of the preliminary path as the welding torch is being moved along the preliminary path. A first current measurement is obtained by measuring the arc welding current when the welding torch is to the first side, and a second current is obtained by measuring the arc welding current when the welding torch is to second side. The first current measurement and the second current measurement are compared and used to redefine the preliminary welding path by moving the welding torch slightly to the side having the preferred current measurement.
Abstract:
A welding station for welding thin-walled copper-nickel pipe. An electronic welding station (10) has an output circuit (13) which provides arc welding power having the arc characteristics specified by a weld parameter selection circuit (12). A welding torch and feeder assembly (11) has a controller (20) which is responsive to a predetermined event, such as the passage of time since the start of the arc, or the average temperature of the pipe (25) as indicated by two temperature-measuring devices (30, 32). The controller (20) adjusts the wire feed speed, the pulse frequency, the pulse width, the welding voltage, the welding current and/or other parameters so as to cause the arc to have the parameters most desired for welding copper-nickel pipe. The present invention provides for a hotter arc for starting the welding operation, thereby obtaining good penetration and bonding, and a cooler arc for continuing the welding operation, thereby preventing burn-through of the pipe (25).
Abstract:
An improved electronic welding station is disclosed. The welding station provides for an improved arc striking capability by providing a higher arc striking voltage and a large arc striking current and, once the arc is struck, automatically switches over to preselected parameters for conducting the welding operation. Also disclosed are a method for preventing transistor failure due to loads which tend to cause a very large instantaneous current flow and an apparatus for protecting the driver circuit and the remaining output transistors in the event that one of the output transistors should suffer a collector-to-base short. The welding station also describes a method of operating the cooling fan at a speed commensurate with the cooling requirements and periodically reversing the voltage to the cooling fan so as to extend the operating lifetime of the fan brushes. The welding station also has several shutdown circuits which protect the components of the welding station in the event of cooling fan failure or excessive heating of the weld station. The welding station also provides for a shutdown period for cooling off in the event that the maximum allowable instantaneous current is exceeded.
Abstract:
An improved electronic welding station is disclosed. The welding station provides for an improved arc striking capability by providing a higher arc striking voltage and a large arc striking current and, once the arc is struck, automatically switches over to preselected parameters for conducting the welding operation. Also disclosed are a method for preventing transistor failure due to loads which tend to cause a very large instantaneous current flow and an apparatus for protecting the driver circuit and the remaining output transistors in the event that one of the output transistors should suffer a collector-to-base short. The welding station also describes a method of operating the cooling fan at a speed commensurate with the cooling requirements and periodically reversing the voltage to the cooling fan so as to extend the operating lifetime of the fan brushes. The welding station also has several shutdown circuits which protect the components of the welding station in the event of cooling fan failure or excessive heating of the weld station. The welding station also provides for a shutdown period for cooling off in the event that the maximum allowable instantaneous current is exceeded.
Abstract:
An improved electronic welding station is disclosed. The welding station provides for an improved arc striking capability by providing a higher arc striking voltage and a large arc striking current and, once the arc is struck, automatically switches over to preselected parameters for conducting the welding operation. Also disclosed are a method for preventing transistor failure due to loads which tend to cause a very large instantaneous current flow and an apparatus for protecting the driver circuit and the remaining output transistors in the event that one of the output transistors should suffer a collector-to-base short. The welding station also describes a method of operating the cooling fan at a speed commensurate with the cooling requirements and periodically reversing the voltage to the cooling fan so as to extend the operating lifetime of the fan brushes. The welding station also has several shutdown circuits which protect the components of the welding station in the event of cooling fan failure or excessive heating of the weld station. The welding station also provides for a shutdown period for cooling off in the event that the maximum allowable instantaneous current is exceeded.
Abstract:
A pulse type arc welder with improved arc starting characteristics. An output voltage level sensor (2017) monitors the output voltage to determine whether the arc has been struck. If the arc has not been struck, a first oscillator (2000) gates a second, higher frequency oscillator (2002) so that the input to the driver (2010) is a chopped, pulsed, high duty cycle waveform. Also, the bandwidth of the output current level sensor (2012) is reduced so that the high value, short lived arc starting transient current does not cause the output current level sensor (2012) to improperly shut down the driver (2010). Additional current limiting protection is provided during this period since the high chopping frequency causes the reactor (2010a) to have a high impedance. After the arc has been struck, the output voltage will drop to the arc sustaining voltage and the output voltage level sensor (2017) will de-energize relay (2003). The first oscillator (2000) then provides the driver (2010) with an input signal having the characteristics selected for the particular welding operation. Also, the bandwidth of the output current level sensor (2012) is restored to its full value.
Abstract:
A method for preventing collisions between robots by causing a first robot to stop or pause so that a second robot may safely pass by or perform a specified operation. Once the second robot has completed its operation then the first robot is allowed to resume operation. Each robot automatically stops when it reaches a certain point in its job. The robots communicate with a central controller which allows the robots to resume operation when the central controller has determined that all of the robots have reached their respective correct positions. This prevents collisions between robots which are operating in the same area, especially those robots operating on the same workpiece. This method works with existing robot welders, does not require modifications to the robots, and does not require expensive spatial analysis computer programs, which may not even be available for the type of processor used in a particular robot. The present invention also provides a method for specifying a compartment entry point for a welding operation based upon data provided from a CAD program. The present invention also provides a method for automatically determining the starting and ending coordinates of a weld using a touch-sensing capability of the robot. The present invention also provides a method for automatically tracking the joint for a welding seam by periodically measuring the coordinates of the components by using the touchsensing feature of the robot. The present invention also provides a method for automatically determining the position of a torch to provide for an optimum angle of attack for a welding operation based upon data, such as beam height and flange overhang, provided from a CAD program. The present invention also provides a method for automatically tracking the joint for a welding seam by weaving (dithering) the torch along the desired path, measuring the arc welding current at peak deviations from the travel path, and comparing the measured current on the two different sides of the weld to determine whether the torch is on the seam. The present invention also uses this method to automatically track the edge of a component for applying a welding bead to the edge of the component. The present invention also provides for automatically selecting a welding program from a standard set of welding programs based upon data from a CAD program.
Abstract:
The present invention provides a method and an apparatus for scanning an object to obtain data on the object and determine the configuration of the object. A gantry (12) allows movement along a first direction (A-A′). A set of platforms (14A, 14B) allows movement along a second direction (B-B′). A set of scanning heads (16A, 16B) provide additional degrees of freedom and also provide for scanning the object (10) to obtain information about the object. The freedom of movement provided by the gantry, the platforms, and the scanning heads allows the object to be completely scanned. In addition, once the initial scanning process has been completely, areas which require additional scanning, such as compartments (10D), are identified. The scanning heads are then positioned, such as directly above or inside a compartment, and then the compartment is scanned to obtain information about the compartment that could not be obtained from the initial scanning procedure. The data obtained from the initial scan and any subsequent scans is processed to determine the configuration of the object. The information concerning the configuration is then used to perform a welding, cutting or other operation on the object.