Abstract:
A method and apparatus for controlling an electronic device using a rotary control. The method includes receiving, by an electronic processor from an inductance sensor, a first inductance. The method further includes comparing, by the electronic processor, the first inductance to a first threshold. The method further includes, determining, by the electronic processor, a location for the rotary control when the first inductance exceeds the first threshold, the method further includes activating, by the electronic processor, a control function based on the location. The method further includes receiving, by the electronic processor from the inductance sensor, a second inductance. The method further includes determining, by the electronic processor, a delta based on the first inductance and the second inductance. The method further includes adjusting, by the electronic processor, the control function based on the delta.
Abstract:
A battery module for a portable communication device having a controller. In one embodiment, the battery module includes a battery accessory interface having a positive terminal, an identifying terminal, and a negative terminal. A voltage regulator is connected to the positive terminal of the battery accessory interface and configured to output a voltage on the positive terminal in response to a control signal. An addressable switch is connected to the identifying terminal of the battery accessory interface. The addressable switch is configured to communicate with the controller and generate the control signal based on input from the controller and the identifying terminal.
Abstract:
An improved keypad and speaker assembly is provided. The assembly (100) comprises a speaker grille formed of torturous porting (220), and a keyboard (108) comprising audio slots (120) which are offset beneath the tortuous porting (220). The speaker (104) is aligned beneath the keyboard (108). The tortuous porting (220) and audio slots (120) provide an unobstructed air passage/path between the speaker and ambient while protecting against water intrusion.
Abstract:
An antenna connector for a portable communication device including, in one implementation, a housing bracket, a core mounting member, a front mounting member, and a back mounting member. The housing bracket includes an antenna barrel that is configured to engage a ferrule antenna connector. The core mounting member includes a radio-frequency (RF) switch that includes a ground barrel, a first electrical contact, and a second electrical contact. The second electrical contact is configured to disconnect from the first electrical contact when a coaxial connector engages completely with the ground barrel. The front mounting member includes a front guiding section that is configured to connect with the core mounting member. The front guiding section is further configured to align the ground barrel with the antenna barrel. The back mounting member includes a back guiding section to keep the core mounting member connected to the front guiding section.
Abstract:
A push-to-talk assembly includes a metal ring defining an interior aperture and including at least one exterior protrusion configured to couple the metal ring to a surface of the portable communication device. The push-to-talk assembly further includes a button coupled to the metal ring and including a flexible polymer material disposed within the interior aperture and co-molded to the metal ring. The button includes a first side configured to be contacted and pressed, and a second, opposite side configured to face an interior of the portable communication device. The push-to-talk assembly further includes a metal backing plate coupled to the second side of the button.
Abstract:
An electrical connector and an electronic device including the electrical connector. The electrical connector comprises a housing and an electrical contact. The housing includes a first wall oriented in a first direction, a second wall oriented in a second direction that is transverse to the first direction, and an aperture defined by the first wall and the second wall. The electrical contact is disposed within the aperture and has a singular structure with a first end and a second end opposite from the first end. A first portion of the electrical contact extends from the aperture in the second direction and is configured to deflect toward the first wall along the second direction. A second portion of the electrical contact extends from the aperture in the first direction and is configured to deflect toward the second wall along the first direction.
Abstract:
A retainer includes a main body having a top wall, a first side wall, a second side wall spaced opposite the first side wall, a front wall, and a rear wall spaced opposite the front wall along a longitudinal axis. The walls define an interior cavity sized and shaped to receive an accessory plug. The front wall defines a front opening that extends into the interior cavity and is sized and shaped to receive a portion of a cable. The front wall also includes a first hook and a second hook each positioned below the front opening. The rear wall includes a third hook extending forward into the interior cavity. The retainer is moved forward linearly, and parallel to the longitudinal axis, to secure the hooks to a portable communications device.
Abstract:
A retainer includes a main body having a top wall, a first side wall, a second side wall spaced opposite the first side wall, a front wall, and a rear wall spaced opposite the front wall along a longitudinal axis. The walls define an interior cavity sized and shaped to receive an accessory plug. The front wall defines a front opening that extends into the interior cavity and is sized and shaped to receive a portion of a cable. The front wall also includes a first hook and a second hook each positioned below the front opening. The rear wall includes a third hook extending forward into the interior cavity. The retainer is moved forward linearly, and parallel to the longitudinal axis, to secure the hooks to a portable communications device.
Abstract:
A method and apparatus for controlling an electronic device using a rotary control. The method includes receiving, by an electronic processor from an inductance sensor, a first inductance. The method further includes comparing, by the electronic processor, the first inductance to a first threshold. The method further includes, determining, by the electronic processor, a location for the rotary control when the first inductance exceeds the first threshold, the method further includes activating, by the electronic processor, a control function based on the location. The method further includes receiving, by the electronic processor from the inductance sensor, a second inductance. The method further includes determining, by the electronic processor, a delta based on the first inductance and the second inductance. The method further includes adjusting, by the electronic processor, the control function based on the delta.
Abstract:
A battery module for a portable communication device having a controller. In one embodiment, the battery module includes a battery accessory interface having a positive terminal, an identifying terminal, and a negative terminal. A voltage regulator is connected to the positive terminal of the battery accessory interface and configured to output a voltage on the positive terminal in response to a control signal. An addressable switch is connected to the identifying terminal of the battery accessory interface. The addressable switch is configured to communicate with the controller and generate the control signal based on input from the controller and the identifying terminal.