Abstract:
A control device may comprise a plurality of buttons, a plurality of light sources located behind the respective buttons and configured to illuminate the buttons, a light detector circuit configured to measure an ambient light level around the control device, and/or a control circuit configured to control the light sources to adjust surface illumination intensities of the respective buttons in response to the measured ambient light level. Each button may comprise indicia indicating a function of the button. The control circuit set the first button as active and the second button as inactive in response to an actuation of the first button. The control circuit may, based on the measured ambient light level, control the light sources to illuminate the first button to an active surface illumination intensity, and to illuminate the second button to an inactive surface illumination intensity that is less than the active surface illumination intensity.
Abstract:
A load control device, such as an electronic ballast, for controlling the power delivered from an AC power source to an electrical load, such as one or more fluorescent lamps, comprises a power converter having an inductor and a power switching device coupled to the inductor, a load control circuit adapted to be coupled to the electrical load, and a control circuit operable to calculate an average input power of the load control device. The control circuit may be operable to calculate a cumulative output power of the power converter while the ballast is preheating filaments of the lamps, and to subsequently determine a fault condition in the lamps in response to the calculated cumulative output power of the power converter. Further, the control circuit may be operable to transmit a digital message including the calculated average input power of the load control device.
Abstract:
A control device may comprise a plurality of buttons, a plurality of light sources located behind the respective buttons and configured to illuminate the buttons, a light detector circuit configured to measure an ambient light level around the control device, and/or a control circuit configured to control the light sources to adjust surface illumination intensities of the respective buttons in response to the measured ambient light level. Each button may comprise indicia indicating a function of the button. The control circuit set the first button as active and the second button as inactive in response to an actuation of the first button. The control circuit may, based on the measured ambient light level, control the light sources to illuminate the first button to an active surface illumination intensity, and to illuminate the second button to an inactive surface illumination intensity that is less than the active surface illumination intensity.
Abstract:
A control device may comprise a plurality of buttons, a plurality of light sources located behind the respective buttons and configured to illuminate the buttons, a light detector circuit configured to measure an ambient light level around the control device, and/or a control circuit configured to control the light sources to adjust surface illumination intensities of the respective buttons in response to the measured ambient light level. Each button may comprise indicia indicating a function of the button. The control circuit set the first button as active and the second button as inactive in response to an actuation of the first button. The control circuit may, based on the measured ambient light level, control the light sources to illuminate the first button to an active surface illumination intensity, and to illuminate the second button to an inactive surface illumination intensity that is less than the active surface illumination intensity.
Abstract:
A load control device, such as an electronic ballast, for controlling the power delivered from an AC power source to an electrical load, such as one or more fluorescent lamps, comprises a power converter having an inductor and a power switching device coupled to the inductor, a load control circuit adapted to be coupled to the electrical load, and a control circuit operable to calculate an average input power of the load control device. The control circuit may be operable to calculate a cumulative output power of the power converter while the ballast is preheating filaments of the lamps, and to subsequently determine a fault condition in the lamps in response to the calculated cumulative output power of the power converter. Further, the control circuit may be operable to transmit a digital message including the calculated average input power of the load control device.
Abstract:
A control device may comprise a plurality of buttons, a plurality of light sources located behind the respective buttons and configured to illuminate the buttons, a light detector circuit configured to measure an ambient light level around the control device, and/or a control circuit configured to control the light sources to adjust surface illumination intensities of the respective buttons in response to the measured ambient light level. Each button may comprise indicia indicating a function of the button. The control circuit set the first button as active and the second button as inactive in response to an actuation of the first button. The control circuit may, based on the measured ambient light level, control the light sources to illuminate the first button to an active surface illumination intensity, and to illuminate the second button to an inactive surface illumination intensity that is less than the active surface illumination intensity.
Abstract:
A control device may comprise a plurality of buttons, a plurality of light sources located behind the respective buttons and configured to illuminate the buttons, a light detector circuit configured to measure an ambient light level around the control device, and/or a control circuit configured to control the light sources to adjust surface illumination intensities of the respective buttons in response to the measured ambient light level. Each button may comprise indicia indicating a function of the button. The control circuit set the first button as active and the second button as inactive in response to an actuation of the first button. The control circuit may, based on the measured ambient light level, control the light sources to illuminate the first button to an active surface illumination intensity, and to illuminate the second button to an inactive surface illumination intensity that is less than the active surface illumination intensity.