Abstract:
A linear compressor is provided that may include a shell including a refrigerant suction inlet, a cylinder provided in the shell, a piston reciprocated in the cylinder, a suction muffler movable together with the piston, the suction muffler defining a refrigerant passage, a suction guide provided at one side of the piston to guide a refrigerant suctioned through the refrigerant suction inlet to the suction muffler, a back cover coupled to the suction guide, and a coupling guide provided in a space defined by the suction guide and the back cover to maintain a coupling force between the suction guide and the back cover.
Abstract:
A linear compressor is provided. The linear compressor may include a shell including a refrigerant inlet, a cylinder provided within the shell, a piston that reciprocates within the cylinder, and a suction muffler provided movable together with the piston. The suction muffler may include a muffler main body that defines a refrigerant passage, a main body insertion portion press-fitted into the muffler main body, and a piston insertion portion press-fitted into the muffler main body to extend into the piston. The piston insertion portion may correspond to the main body insertion portion in configuration.
Abstract:
A linear compressor is provided that may include a shell provided with a refrigerant inlet; a cylinder provided inside of the shell to form a compression space; a piston that reciprocates inside of the cylinder to compress a refrigerant in the compression space; and a motor assembly that provides a drive force to the piston and provided with a permanent magnet. The piston may include a piston body having a cylindrical outer circumferential surface and a surface-treated area, which may be processed with a material having a predetermined hardness value, and a valve support provided at an end of the piston body and having a suctioning hole be in communication with the compression space. The valve support may form a first non-surface-treated area, which is not surface-treated.
Abstract:
An apparatus and a method for controlling a linear compressor, and a linear compressor operable with high power and low noise are provided. The apparatus may include a reference operating frequency determiner that determines a reference operating frequency at which a linear motor is operated, and an actual operating frequency determiner that determines an actual operating frequency as an arbitrary value included in a predetermined numerical value range in a vertical direction around the reference operating frequency. A correction signal may be determined by the actual operating frequency.
Abstract:
A linear compressor is provided that may include a shell provided with a refrigerant inlet; a cylinder provided inside of the shell to form a compression space; a piston that reciprocates inside of the cylinder to compress a refrigerant in the compression space; and a motor assembly that provides a drive force to the piston and provided with a permanent magnet. The piston may include a piston body having a cylindrical outer circumferential surface and a surface-treated area, which may be processed with a material having a predetermined hardness value, and a valve support provided at an end of the piston body and having a suctioning hole be in communication with the compression space. The valve support may form a first non-surface-treated area, which is not surface-treated.