Abstract:
Provided is a hot water supply tank including: a case forming an appearance of the hot water supply tank; a heating container accommodating a fluid and having an inner side treated with anticorrosive; a heater installed on an outer side of the heating container and transferring heat to the fluid; and a heat insulator interposed between the case and the heater, wherein in a predetermined volume of the heating container, a ratio at which a performance of the heater to transfer heat (hereinafter, heat transfer performance) is maximized (hereinafter, optimum ratio) among the ratios of side height to bottom diameter of the heating container (hereinafter, aspect ratios) is determined by whether the heater is installed on the bottom as well as side of the heating container, and determined based on an area of the heating container occupied by the heater (hereinafter, heat transfer area).
Abstract:
An air conditioner is provided. The air conditioner may include a compressor, an outdoor heat-exchanger, an indoor heat-exchanger, a converter valve, an accumulator, an accumulator jacket, and a supercooling heat-exchange hub. The accumulator jacket may be disposed on a surface of the accumulator and contain a refrigerating fluid flowing therein. The refrigerating fluid may exchange heat with the accumulator to be cooled. The supercooling heat-exchange hub may be connected to the accumulator jacket to store the cooled refrigerating fluid and overcool the refrigerant flowing between the outdoor heat-exchanger and the indoor heat-exchanger.
Abstract:
A heat radiation unit is disclosed. The heat radiation unit includes a heat radiation member thermally connected to a heat source, to radiate heat generated from the heat source, a refrigerant pipe thermally connected to the heat radiation member while being formed therein with a channel, through which refrigerant flows, a pipe jacket coupled to the heat radiation member, and formed with a receiving groove to receive a portion of the refrigerant pipe, and a cover bracket to press the portion of the refrigerant pipe received in the receiving groove of the pipe jacket in a downward direction of the receiving groove. An outdoor unit of an air conditioner is also disclosed. The outdoor unit includes a case to form an appearance of the outdoor unit, a heat source disposed in the case, and the heat radiation unit connected to the heat source, to radiate heat from the heat source.
Abstract:
A heat radiation unit is disclosed. The heat radiation unit includes a heat radiation member thermally connected to a heat source, to radiate heat generated from the heat source, a refrigerant pipe thermally connected to the heat radiation member while being formed therein with a channel, through which refrigerant flows, a pipe jacket coupled to the heat radiation member, and formed with a receiving groove to receive a portion of the refrigerant pipe, and a cover bracket to press the portion of the refrigerant pipe received in the receiving groove of the pipe jacket in a downward direction of the receiving groove. An outdoor unit of an air conditioner is also disclosed. The outdoor unit includes a case to form an appearance of the outdoor unit, a heat source disposed in the case, and the heat radiation unit connected to the heat source, to radiate heat from the heat source.
Abstract:
An air conditioner that includes a compressor that compresses a refrigerant, a main outdoor heat exchanger that condenses the refrigerant in a cooling mode and that evaporates the refrigerant in a heating mode, an indoor heat exchanger that evaporates the refrigerant in the cooling mode while condensing the refrigerant in the heating mode, a switch that guides the refrigerant discharged from the compressor to the main outdoor heat exchanger in the cooling mode and that guides the refrigerant discharged from the compressor to the indoor heat exchanger in the heating mode, and a sub outdoor heat exchanger that evaporates a portion of the refrigerant condensed in the main outdoor heat exchanger in a low-load cooling mode and that condenses a portion of the refrigerant discharged from the compressor in a low-load heating mode.
Abstract:
A regenerative air-conditioning apparatus includes a thermal energy storage unit, first and second valve devices for switching a flow direction of a refrigerant compressed in a compressor, a first branch part disposed on an outlet-side of the compressor, the first branch dividing the refrigerant compressed in the compressor to flow into first and second valve devices or the thermal energy storage unit, a first storage unit connection tube extending from the first branch part to the thermal energy storage unit, a condensed refrigerant tube extending from an outdoor heat exchanger to an indoor heat exchanger, a second storage unit connection tube extending from the thermal energy storage unit to the condensed refrigerant tube, and a first expansion device disposed in the first storage unit connection tube to selectively restrict a flow of the refrigerant from the first branch part to the thermal energy storage unit.