Abstract:
The present invention relates to an electrolyte containing a polydopamine and a lithium-sulfur battery including the same and, more particularly, to a technique in which polydopamine contained in an electrolyte adsorbs a lithium polysulfide eluted from a positive electrode of a lithium-sulfur battery. When using an electrolyte, according to the present invention, to which polydopamine particles are added, the polydopamine particles dispersed in the electrolyte act to adsorb lithium polysulfide eluted from a positive electrode during the charging and discharging, and thus can suppress the diffusion thereof, i.e., suppress a shuttle reaction, thereby improving the capacity and lifetime characteristics of the lithium-sulfur battery.
Abstract:
The present invention relates to a separator for a lithium-sulfur battery having a composite coating layer including polydopamine, and a method for preparing the same, and in particular, to a lithium-sulfur battery suppressing lithium polysulfide elution by using a composite coating layer including polydopamine and a conductive material on one surface of a separator. In the lithium-sulfur battery according to the present invention, a porous structure of polydopamine adsorbs lithium polysulfide eluted from a positive electrode preventing elution and diffusion, and by providing additional electric conductivity, a reaction site of a positive electrode active material is provided, and therefore, battery capacity and life time properties are enhanced.
Abstract:
A binder for a lithium-sulfur battery, and a positive electrode and a lithium-sulfur battery including the same, and in particular, to a binder for a lithium-sulfur battery including lithium polyacrylate and polyvinyl alcohol. By including two types of specific polymers, the binder for a lithium-sulfur battery is capable of enhancing electrochemical properties and stability of a positive electrode, and thereby enhancing capacity and lifetime properties of a lithium-sulfur battery.
Abstract:
A method for enhancing a lifetime of a lithium secondary battery including manufacturing a battery by injecting an electrolyte liquid to an electrode assembly-embedded battery; and charging and discharging the manufactured battery; and additionally injecting an electrolyte liquid earlier than half a cycle point with respect to the number of charge and discharge cycles reaching discharge capacity of 80% compared to initial capacity is provided.
Abstract:
The present specification relates to an anode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method for manufacturing an anode.
Abstract:
The present specification relates to an anode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method for manufacturing an anode.
Abstract:
The present application relates to a cathode for a lithium-sulfur battery and a method of preparing the same. More specifically, the cathode for a lithium-sulfur battery according to an exemplary embodiment of the present application includes: a cathode active part including a sulfur-carbon composite; and a cathode coating layer including an amphiphilic polymer provided on at least one portion of a surface of the cathode active part and including a hydrophilic portion and a hydrophobic portion.
Abstract:
The present application relates to a separation membrane and a lithium-sulfur battery including the same, and the separation membrane according to the present application prevents elution of lithium polysulfide in a cathode and suppresses growth of a lithium dendrite generated in an anode, and thus has an effect that a life-span and safety of the battery are improved.