Abstract:
Disclosed are a method and system for detecting a fault of a parallel coil type permanent magnet motor. This method includes driving a parallel coil type motor on the basis of a pre-defined current reference value, detecting a phase current vector of the motor, and calculating a current compensation value for removing a negative sequence component of the motor on the basis of the phase current vector.
Abstract:
Provided are a power generation method and system of a power generator that can allow an output power of the power generator to be constant and cope with a case in which the velocity of a power generation source changes very quickly at a low lost. The power generation method includes determining a reference total power intended to be generated by a plurality of power generators, calculating a current command value through the reference total power and an instantaneous velocity sensed by each of the plurality of power generators, and regulating an output current of the power generator using the calculated current command value such that a total power output by the plurality of power generators is approximate to the reference total power.
Abstract:
A method and system for detecting a fault of a serial coil type permanent magnet motor includes driving the motor based on a predefined current reference value, detecting a phase current vector of the motor, and calculating a current compensation value for removing a negative sequence component of the motor based on the phase current vector. The current compensation value is provided to a negative sequence current controller for calculating a faulty phase and a degree of a fault of the motor using the output of the negative sequence current controller and a fault model to which induced magnetic flux variations in a specific slot of a specific faulty phase of the motor and other slots of the same phase as the specific phase are applied, and applying a current reference value to which the calculated faulty phase and degree of fault are applied.
Abstract:
The present disclosure relates to an apparatus and method for estimating a temperature of a motor using a Hall sensor. The method includes detecting, at a digital Hall sensor, a position of a rotor included in a motor and outputting an on signal in an operating period and an off signal in a release period according to a relative position of the rotor, calculating, at a temperature determining module, a difference between duration of the operating period and duration of the release period according to an output waveform of the digital Hall sensor, and then determining, at the temperature determining module, a temperature of the motor with reference to a temperature corresponding to the duration difference. Accordingly, it is possible to estimate the internal temperature of a motor without installing a temperature sensor in the motor, to maintain a small size of the motor, and to reduce production costs.
Abstract:
Disclosed are a method and system for detecting a fault of a parallel coil type permanent magnet motor. This method includes driving a parallel coil type motor on the basis of a pre-defined current reference value, detecting a phase current vector of the motor, and calculating a current compensation value for removing a negative sequence component of the motor on the basis of the phase current vector.
Abstract:
A motor includes: a first slot and a second slot in which a first current having the same phase flows, the first slot including a first coil end portion in which a current flows in a first direction and a second coil end portion in which a current flows in the opposite direction of the first direction, and the second slot including a third coil end portion in which a current flows in the second direction and a fourth coil end portion in which a current flows in the first direction, a stator forming a fixed magnetic field by the first current, and a rotor forming a rotating field and rotated according to an interaction with the fixed magnetic field formed by the stator.
Abstract:
A motor includes: a first slot and a second slot in which a first current having the same phase flows, the first slot including a first coil end portion in which a current flows in a first direction and a second coil end portion in which a current flows in the opposite direction of the first direction, and the second slot including a third coil end portion in which a current flows in the second direction and a fourth coil end portion in which a current flows in the first direction, a stator forming a fixed magnetic field by the first current, and a rotor forming a rotating field and rotated according to an interaction with the fixed magnetic field formed by the stator.
Abstract:
Provided are a power generation method and system of a power generator that can allow an output power of the power generator to be constant and cope with a case in which the velocity of a power generation source changes very quickly at a low lost. The power generation method includes determining a reference total power intended to be generated by a plurality of power generators, calculating a current command value through the reference total power and an instantaneous velocity sensed by each of the plurality of power generators, and regulating an output current of the power generator using the calculated current command value such that a total power output by the plurality of power generators is approximate to the reference total power.
Abstract:
The present disclosure relates to an apparatus and method for estimating a temperature of a motor using a Hall sensor. The method includes detecting, at a digital Hall sensor, a position of a rotor included in a motor and outputting an on signal in an operating period and an off signal in a release period according to a relative position of the rotor, calculating, at a temperature determining module, a difference between duration of the operating period and duration of the release period according to an output waveform of the digital Hall sensor, and then determining, at the temperature determining module, a temperature of the motor with reference to a temperature corresponding to the duration difference. Accordingly, it is possible to estimate the internal temperature of a motor without installing a temperature sensor in the motor, to maintain a small size of the motor, and to reduce production costs.
Abstract:
A method and system for detecting a fault of a serial coil type permanent magnet motor includes driving the motor based on a predefined current reference value, detecting a phase current vector of the motor, and calculating a current compensation value for removing a negative sequence component of the motor based on the phase current vector. The current compensation value is provided to a negative sequence current controller for calculating a faulty phase and a degree of a fault of the motor using the output of the negative sequence current controller and a fault model to which induced magnetic flux variations in a specific slot of a specific faulty phase of the motor and other slots of the same phase as the specific phase are applied, and applying a current reference value to which the calculated faulty phase and degree of fault are applied.