Abstract:
An occupant safety system using an optical fiber grid sheet and a method thereof are provided. The occupant safety system applies light to optical fibers constituting an optical fiber grid which is attached to a moving body and in which the optical fibers are arranged in a grid pattern; receives the applied light through the optical fibers; grasps a location of impact on the moving body based on the received light receiving signals; and controls operations of safety devices provided in the moving body based on the grasped location of the impact. Accordingly, the occupant safety system can sense impacts on the moving body everywhere through the optical fiber grid, and can exactly grasp the location of the impact and can drive an appropriate safety device timely. Therefore, the occupant can be protected safely.
Abstract:
Provided herein is a communication system and method capable of performing visible light communication and optic networking, the system performing visible light communication with an electronic device inside a vehicle and accessing an optic network inside the vehicle. Accordingly, RF interference and distortion is removed, and thus not effecting use of a wireless device inside the vehicle, thereby reducing malfunction/error of a electronic control device and enabling real time data transceiving in the vehicle.
Abstract:
An ECU monitoring system includes: an ECU that includes an input interface unit, a computer unit, and an output interface unit; a storage unit that stores a normal input signal and a normal output signal; a comparing unit that calculates a compared difference by comparing the current input signal with a previous input signal stored in the storage unit, and outputs an alarming signal showing the current input signal is abnormal, when the compared difference is out of a predetermined range; and a circulator that receives the output signal, provides the output signal when the output signal is a normal output signal, and provides a normal output signal to the output interface unit, instead of the output signal outputted from the computer in response to the abnormal input signal, when receiving the alarming signal from the comparing unit.
Abstract:
An ECU monitoring system includes: an ECU that includes an input interface unit, a computer unit, and an output interface unit; a storage unit that stores a normal input signal and a normal output signal; a comparing unit that calculates a compared difference by comparing the current input signal with a previous input signal stored in the storage unit, and outputs an alarming signal showing the current input signal is abnormal, when the compared difference is out of a predetermined range; and a circulator that receives the output signal, provides the output signal when the output signal is a normal output signal, and provides a normal output signal to the output interface unit, instead of the output signal outputted from the computer in response to the abnormal input signal, when receiving the alarming signal from the comparing unit.
Abstract:
Provided herein is a communication system and method capable of performing visible light communication and optic networking, the system performing visible light communication with an electronic device inside a vehicle and accessing an optic network inside the vehicle. Accordingly, RF interference and distortion is removed, and thus not effecting use of a wireless device inside the vehicle, thereby reducing malfunction/error of a electronic control device and enabling real time data transceiving in the vehicle.
Abstract:
The vehicle AVM system according to an exemplary embodiment of the present disclosure includes a first camera network constructed of some of the cameras configuring the AVM system; a second camera network constructed of some of the cameras configuring the AVM system; and a processor configured to create a first image from the images created by the cameras configuring the first camera network, and to create a second image from the images created by the cameras configuring the second camera network. Accordingly, by installing more number of cameras in an AVM system of a vehicle than the number of cameras in a general vehicle and thus removing dead zones according to vehicle characteristics, it becomes possible to perform smooth networking and prevent image delay, thereby preventing accidents due to dead zones and image delay.