Abstract:
In some embodiments, an apparatus includes a core network node configured to be operatively coupled to a set of wired network nodes and a set of wireless network nodes. The core network node is configured to receive, at a first time, a first data packet to be sent to a wired device operatively coupled to a wired network node from the set of wired network nodes. The core network node is configured to also receive, at a second time, a second data packet to be sent to a wireless device operatively coupled to a wireless network node from the set of wireless network nodes. The core network node is configured to apply a common policy to the first data packet and the second data packet based on an identifier of a user associated with both the wireless device and the wired device.
Abstract:
In some examples, a method includes selecting, by a first virtual routing node of a single-chassis network device having a plurality of forwarding components and a plurality of fabric links coupling respective pairs of the plurality of forwarding components at respective fabric interfaces of the plurality of forwarding components, a fabric interface of a forwarding component having an egress interface toward a network destination and that is associated with the first virtual routing node; advertising, to the second virtual routing node, the fabric interface as a next hop for the network destination; storing, by the second virtual routing node to a context data structure of the second virtual node, the fabric interface as a next hop for the network destination; selecting the fabric interface from among a plurality of fabric interfaces as a next hop for the network destination; and forwarding network traffic destined for the network destination to the selected fabric interface.
Abstract:
In some examples, a method includes selecting, by a first virtual routing node of a single-chassis network device having a plurality of forwarding components and a plurality of fabric links coupling respective pairs of the plurality of forwarding components at respective fabric interfaces of the plurality of forwarding components, a fabric interface of a forwarding component having an egress interface toward a network destination and that is associated with the first virtual routing node; advertising, to the second virtual routing node, the fabric interface as a next hop for the network destination; storing, by the second virtual routing node to a context data structure of the second virtual node, the fabric interface as a next hop for the network destination; selecting the fabric interface from among a plurality of fabric interfaces as a next hop for the network destination; and forwarding network traffic destined for the network destination to the selected fabric interface.
Abstract:
A computer-implemented method for virtualizing customer-premises equipment may include (1) receiving, at a service provider's network, at least one flow of network traffic from a remote device included in a user's private network, (2) identifying, within the flow of network traffic, at least one potentially non-unique private address that represents the remote device with respect to the user's private network, (3) determining at least one unique routable address that represents the remote device with respect to the service provider's network based at least in part on a network interface assigned to the user's private network and the potentially non-unique private address, and then (4) translating the potentially non-unique private address to the unique routable address to facilitate routing return network traffic to the remote device in connection with the flow of network traffic. Various other systems, methods, and computer-readable media are also disclosed.
Abstract:
In some examples, a method includes selecting, by a first virtual routing node of a single-chassis network device having a plurality of forwarding components and a plurality of fabric links coupling respective pairs of the plurality of forwarding components at respective fabric interfaces of the plurality of forwarding components, a fabric interface of a forwarding component of the plurality of forwarding components that has an egress interface toward a network destination and that is associated with the first virtual routing node; advertising, to the second virtual routing node, the fabric interface as a next hop for the network destination and a label for use in establishing a transport label switched path (LSP); and computing, by the second virtual routing node, a path for the transport LSP to include the fabric interface, and establishing the transport LSP along the computed path.
Abstract:
In some embodiments, an apparatus includes a first core device configured to be disposed within a network. The network has a set of access nodes and a second core device. The first core device is configured to receive a signal designating the first core device as a master device for a virtual group identifier such that the second core device is designated as a back-up device for that virtual group identifier.
Abstract:
In some embodiments, an apparatus includes a first controller configured to be operatively coupled within a network having a set of network nodes, a forwarding gateway and a configuration entity. The first controller is configured to manage session state and node state associated with the set of network nodes independent of the forwarding gateway. The first controller is configured to fail over to a second controller when the first controller fails, without the forwarding gateway failing over and without the configuration entity failing over.
Abstract:
In one example, a management component executing on a single-chassis network device configures a virtual node with an abstract fabric interface having, as a destination address, identifiers of packet processors (e.g., PTFE-IDs) assigned to the virtual node on the other end of the abstract fabric interface. The management component of the single-chassis network device pre-creates an underlay network by using the fabric links at the packet processor. When the management component creates and connects an abstract fabric interface on the virtual nodes, the management component forms an overlay network and attaches the overlay network to the underlay network, e.g., by programming the forwarding plane packet processor, to connect the virtual nodes. However, users of the network device, external devices, and routing protocols will not view the abstract fabric interface as an overlay interface, but as a regular Ethernet interface (e.g., a Gigabit Ethernet interface).
Abstract:
In one example, a management component executing on a single-chassis network device configures a virtual node with an abstract fabric interface having, as a destination address, identifiers of packet processors (e.g., PTFE-IDs) assigned to the virtual node on the other end of the abstract fabric interface. The management component of the single-chassis network device pre-creates an underlay network by using the fabric links at the packet processor. When the management component creates and connects an abstract fabric interface on the virtual nodes, the management component forms an overlay network and attaches the overlay network to the underlay network, e.g., by programming the forwarding plane packet processor, to connect the virtual nodes. However, users of the network device, external devices, and routing protocols will not view the abstract fabric interface as an overlay interface, but as a regular Ethernet interface (e.g., a Gigabit Ethernet interface)
Abstract:
In some embodiments, an apparatus includes a first controller configured to be operatively coupled within a network having a set of network nodes, a forwarding gateway and a configuration entity. The first controller is configured to manage session state and node state associated with the set of network nodes independent of the forwarding gateway. The first controller is configured to fail over to a second controller when the first controller fails, without the forwarding gateway failing over and without the configuration entity failing over.