Abstract:
Methods for manufacturing passive strain indicator on turbine components include providing a turbine component comprising an exterior surface, and, depositing a ceramic material onto a portion of the exterior surface to form a passive strain indicator comprising at least two reference points.
Abstract:
Systems and methods for monitoring turbine component deformation are provided. The turbine component has an exterior surface. A method includes directly measuring a strain sensor configured on the exterior surface of the turbine component along an X-axis, a Y-axis and a Z-axis to obtain X-axis data points, Y-axis data points, and Z-axis data points. The X-axis, Y-axis and Z-axis are mutually orthogonal. The method further includes assembling a three-dimensional profile of the strain sensor based on the X-axis data points, Y-axis data points and Z-axis data points.
Abstract:
A component identification system for identifying an industrial machine component in situ is disclosed herein. In an embodiment, a computer system is provided which is configured to implement a method of identifying a component of an industrial machine in situ. In particular, the computer system is configured to decode an image containing a data matrix code, and identify the data matrix code in the image. The computer system is further configured to associate the data matrix code in the image with an identified component in a database.
Abstract:
Stripping a metallic bond coat from an article using a wet chemical process. An article removed from service and having a metallic bond coat applied over a surface of its metallic substrate is provided. The metallic bond coat is used to improve the adhesion of a TBC to the article, so grit blasting to first remove any TBC applied over the bond coat and which still remains on the article initially may be required. The bond coated article is then immersed in an acid solution of HCl/H3PO4 at a predetermined temperature for a predetermined amount of time, the HCl/H3PO4 solution reacting with the bond coat applied over the metallic substrate to form a smut on the surface. The article is then removed from the HCl/H3PO4 solution and quickly immersed in a solution of NaOH for a predetermined amount of time to at least partially desmut the surface.
Abstract:
Systems and methods for monitoring turbine component deformation are provided. The turbine component has an exterior surface. A method includes directly measuring a strain sensor configured on the exterior surface of the turbine component along an X-axis, a Y-axis and a Z-axis to obtain X-axis data points, Y-axis data points, and Z-axis data points. The X-axis, Y-axis and Z-axis are mutually orthogonal. The method further includes assembling a three-dimensional profile of the strain sensor based on the X-axis data points, Y-axis data points and Z-axis data points.
Abstract:
According to one aspect of the invention, a method is provided for modifying an airfoil shroud located at a tip of an airfoil of a airfoil, the airfoil shroud having a first end edge, a second end edge, a leading edge and a trailing edge. The method includes locating a reference location in the first end edge of the airfoil shroud, the reference location being proximate a seal rail extending circumferentially from the substantially horizontal surface and forming a relief cut in the airfoil shroud to remove the reference location, wherein a modifying of the airfoil shroud is complete following forming of the relief cut.
Abstract:
According to one aspect, a fixture for an airfoil shroud having a first end edge, a second end edge, a leading edge, a trailing edge, a radially outer side and a radially inner side with respect to a rotor axis of a bucket having the airfoil shroud is provided. The fixture includes a base plate, a first member extending from the base plate configured to locate and abut the first end edge, a second member extending from the base plate configured to locate and abut a side of a seal rail, a third member extending from the base plate configured to locate and abut the radially outer side of the airfoil shroud and a template recess formed in the base plate proximate the first end edge to define a geometry of a relief cut in the trailing edge of the airfoil shroud.
Abstract:
Methods for manufacturing strain sensors on turbine components include providing a turbine component comprising an exterior surface, depositing a ceramic material onto a portion of the exterior surface, and ablating at least a portion of the ceramic material to form a strain sensor comprising at least two reference points.
Abstract:
A bucket tip shroud measurement fixture includes a frame extending from a first end to a second end through an intermediate portion having a first surface and an opposing second surface, a first tip shroud fixing member extending from the second surface of the frame at the first end, and a second tip shroud fixing member extending from the second surface of the frame at the second end. The first and second tip shroud fixing members are configured and disposed to retain and establish an orientation of a bucket tip shroud relative the frame. A plurality of reference points are provided on the frame. The plurality of reference points are configured and disposed to receive a coordinate measuring machine (CMM) probe.
Abstract:
A method of locally inspecting and repairing a coated component is provided. The method includes determining an area of interest on the coated component, wherein the area of interest has little to no visible damage. The method also includes removing a coating proximate the area of interest to expose a base material of the coated component. The method further includes inspecting the area of interest for damage to the base material.