Abstract:
A microgrid system includes one or more power generators configured to provide electrical energy. The microgrid system also includes a localized distribution network coupled to the one or more power generators, coupled to the one or more loads, and coupled to an external grid. The microgrid system further includes a microgrid controller configured to predict microgrid demand for the one or more loads for a predetermined period of time. The microgrid controller is also configured to receive demand information for the external grid for the predetermined period of time. The microgrid controller is further configured to determine an operation plan for the one or more power generators based on the predicted microgrid demand and the received demand information. Moreover, the microgrid controller is configured to determine a schedule to transmit electrical energy to the external grid based on the operation plan.
Abstract:
The embodiments described herein provide for a system including a processor. The processor is configured to select at least one grid system contingency from a plurality of grid system contingencies. The processor is further configured to derive one or more eigen-sensitivity values based on the at least on grid system contingency. The processor is also configured to derive one or more control actions at least partially based on the eigen-sensitivity values. The processor is additionally configured to apply the one or more control actions for generation re-dispatch of a grid system.
Abstract:
A method for modelling load in a power grid is provided. The method includes obtaining measurement data from a measurement device in the power grid, identifying one or more voltage adjustment events in the power grid from the measurement data, and generating a load model based on one or more voltage factors computed using the one or more voltage adjustment events.
Abstract:
In one aspect, a computer system for managing occurrences of data anomalies in a data stream is provided. The computer system includes a processor in communication with the data stream. The processor is programmed to receive a first data stream from a phasor measurement unit. The processor is also programmed to calculate at least one singular value associated with the first data stream. The processor is further programmed to detect a first data anomaly within the first data stream using the at least one singular value. The first data anomaly occurs during a first time segment. The processor is also programmed to indicate the first time segment as containing the first data anomaly.
Abstract:
A computer-based method for contingency analysis of oscillatory stability in an electrical power transmission system is provided. The method uses at least one processor. The method includes receiving, by the at least one processor, a plurality of component inputs from a plurality of system components within the electrical power transmission system. The method also includes generating a nominal matrix for the electrical power transmission system. The nominal matrix includes a set of equations at least partially modeling the electrical power transmission system. The method further includes calculating eigenvalues and eigenvectors of the nominal matrix. The method also includes identifying a contingency representing a postulated disturbance of the electrical power transmission system. The method further includes estimating a contingency eigenvalue for the contingency using the eigenvalues and eigenvectors of the nominal matrix.
Abstract:
A dynamic simulation engine, having system parameters, may be provided for a component of an electrical power system (e.g., a generator, wind turbine, etc.). A model parameter tuning engine may receive, from a measurement data store, measurement data measured by an electrical power system measurement unit (e.g., a phasor measurement unit or digital fault recorder measuring a disturbance event). The model parameter tuning engine may then pre-condition the measurement data and set-up an optimization problem based on a result of the pre-conditioning. The system parameters of the dynamic simulation engine may be determined by solving the optimization problem with an iterative method until at least one convergence criteria is met. According to some embodiments, solving the optimization problem includes a Jacobian approximation that does not call the dynamic simulation engine if an improvement of residual meets a pre-defined criteria.
Abstract:
A generator control computer device for operating at least one generator attached to a grid is provided. The generator control computer device includes at least one processor in communication with at least one memory device. The generator control computer device is configured to receive, from at least one sensor, a plurality of sensor readings representing one or more conditions of the at least one generator, calculate a current grid impedance of the grid based on the plurality of sensor readings, determine a steady state stability limit for the at least one generator based on the current grid impedance, and adjust operation of the at least one generator based on the determined steady state stability limit.
Abstract:
A computer-based method for contingency analysis of oscillatory stability in an electrical power transmission system is provided. The method uses at least one processor. The method includes receiving, by the at least one processor, a plurality of component inputs from a plurality of system components within the electrical power transmission system. The method also includes generating a nominal matrix for the electrical power transmission system. The nominal matrix includes a set of equations at least partially modeling the electrical power transmission system. The method further includes calculating eigenvalues and eigenvectors of the nominal matrix. The method also includes identifying a contingency representing a postulated disturbance of the electrical power transmission system. The method further includes estimating a contingency eigenvalue for the contingency using the eigenvalues and eigenvectors of the nominal matrix.
Abstract:
A computer system for analyzing system parameters of a simulation model for an electrical power system includes a processor programmed to generate a trajectory sensitivities matrix for the electrical power system using a dynamic model of the electrical power system that includes a plurality of system parameters, and to identify a plurality of well-conditioned parameters for a first disturbance from the plurality of system parameters based at least in part on the trajectory sensitivities matrix. The processor is also programmed to generate a first pair of well-conditioned parameters from the plurality of well-conditioned parameters. The first pair includes a first parameter and a second parameter. The processor is further programmed to compute a dependence value between the first parameter and the second parameter, and to provide an indicator of dependence between the first parameter and the second parameter using the dependence value.
Abstract:
According to some embodiments, a plurality of heterogeneous data source nodes may each generate a series of current data source node values over time that represent a current operation of an electric power grid. A real-time threat detection computer, coupled to the plurality of heterogeneous data source nodes, may receive the series of current data source node values and generate a set of current feature vectors. The threat detection computer may then access an abnormal state detection model having at least one decision boundary created offline using at least one of normal and abnormal feature vectors. The abnormal state detection model may be executed, and a threat alert signal may be transmitted if appropriate based on the set of current feature vectors and the at least one decision boundary.