Abstract:
An adapter comprises a connecting nozzle, a connecting nozzle as well as a connecting nozzle. The free nozzle ends of the connecting nozzles are adapted to be connected to line ends of fluid lines. The adapter includes, for guiding flowing fluid in and then out, two mutually separated, tubular flow channels, of which a flow channel extends from a flow opening located in the free nozzle end of the connecting nozzle to a flow opening located in the free nozzle end of the connecting nozzle and a flow channel extends from a flow opening located in the free nozzle end of the connecting nozzle to a flow opening located in the free nozzle end. Moreover, the adapter includes, bordering on a region of the free nozzle end located between the flow openings a projection, which extends from the nozzle end with a length to a free projection end remote therefrom. A fluid line system formed by means of the adapter comprises, furthermore, a fluid line with, enveloped by a wall, a lumen, which extends from a flow opening located in a line end of the fluid line both to a flow opening located in a line end of the fluid line as well as also to a flow opening located spaced from the flow opening in the line end. The fluid line can be connected with its line end to the connecting nozzle of the adapter in such a manner that the projection protrudes inwardly into the lumen of the fluid line to form two tubular chambers of the fluid line mutually separated by the projection and adapted for guiding through flowing fluid.
Abstract:
The method serves for monitoring and/or checking a pressure device having a lumen surrounded by a wall for conveying and/or storing a fluid. To this end, the method comprises a step of registering both a strain of a first wall segment as well as also a strain of at least a second wall segment spaced from the first wall segment, for ascertaining a strain deviation value representing a difference between the strain of the first wall segment and the strain of the second wall segment, as well as a step of using the strain deviation value for ascertaining damage to the wall, as a result of plastic deformation of the wall and/or as a result of wear of the wall. The measuring system of the invention comprises supplementally to the pressure device a first strain sensor affixed on the first wall segment for producing a first strain signal dependent on a time variable strain of the first wall segment as well as at least a second strain sensor affixed on the second wall segment for producing a second strain signal dependent on a time variable strain of the second wall segment. Moreover, the measuring system comprises a transmitter electronics electrically coupled both with the first strain sensor as well as also the second strain sensor. The transmitter electronics is adapted to receive both the first strain signal as well as also the second strain signal as well as to ascertain, with application of the strain signals, damage to the wall.
Abstract:
An adapter includes several connecting nozzles. Free nozzle ends of the connecting nozzles are adapted to be connected to line ends of fluid lines. The adapter includes, for guiding flowing fluid in and then out, two mutually separated, tubular flow channels. Moreover, the adapter includes a projection, which extends from the nozzle end with a length to a free projection end remote therefrom. A fluid line system formed by means of the adapter comprises, furthermore, a fluid line with, enveloped by a wall, a lumen. The fluid line can be connected with its line end to the connecting nozzle of the adapter in such a manner that the projection protrudes inwardly into the lumen of the fluid line to form two tubular chambers of the fluid line mutually separated by the projection and adapted for guiding through flowing fluid.
Abstract:
A measuring system for measuring at least one measured variable of a flowing fluid, comprises a fluid supply line, a transducer apparatus, which has a tube and at least one other tube and is adapted to deliver at least one measurement signal corresponding to the at least one measured variable, a fluid return line, and a fluid withdrawal line. To open a first flow path, which leads from the lumen of the fluid supply line to the lumen of the tube, further to the lumen of the tube and further to the lumen of the fluid return line, equally as well not to the lumen of the fluid withdrawal line, and thereafter to allow fluid to flow along the flow path for the maintaining the temperature and/or for cleaning of parts of the measuring system and/or for conditioning fluid. It is, additionally, provided (instead of the first flow path) thereafter to open a second flow path, which leads from the lumen of the fluid supply line to the lumen of the first tube and, in parallel, to the lumen of the second tube and further from the lumen of the first tube, and from the lumen of the second tube, in each case, to the lumen of the fluid withdrawal line, as well as to allow fluid to flow along the second flow path. Moreover, it is provided, while allowing fluid to flow along the second flow path, in given cases, also while allowing fluid to flow along the first flow path, to generate at least one measurement signal, as well as to use the measurement signal for ascertaining measured values of the at least one measured variable.
Abstract:
A measuring system for measuring at least one measured variable of a flowing fluid, comprises a fluid supply line, a transducer apparatus, which has a tube and at least one other tube and is adapted to deliver at least one measurement signal corresponding to the at least one measured variable, a fluid return line, and a fluid withdrawal line. To open a first flow path, which leads from the lumen of the fluid supply line to the lumen of the tube, further to the lumen of the tube and further to the lumen of the fluid return line, equally as well not to the lumen of the fluid withdrawal line, and thereafter to allow fluid to flow along the flow path for the maintaining the temperature and/or for cleaning of parts of the measuring system and/or for conditioning fluid. It is, additionally, provided (instead of the first flow path) thereafter to open a second flow path, which leads from the lumen of the fluid supply line to the lumen of the first tube and, in parallel, to the lumen of the second tube and further from the lumen of the first tube, and from the lumen of the second tube, in each case, to the lumen of the fluid withdrawal line, as well as to allow fluid to flow along the second flow path. Moreover, it is provided, while allowing fluid to flow along the second flow path, in given cases, also while allowing fluid to flow along the first flow path, to generate at least one measurement signal, as well as to use the measurement signal for ascertaining measured values of the at least one measured variable.
Abstract:
An adapter includes several connecting nozzles. Free nozzle ends of the connecting nozzles are adapted to be connected to line ends of fluid lines. The adapter includes, for guiding flowing fluid in and then out, two mutually separated, tubular flow channels. Moreover, the adapter includes a projection, which extends from the nozzle end with a length to a free projection end remote therefrom. A fluid line system formed by means of the adapter comprises, furthermore, a fluid line with, enveloped by a wall, a lumen. The fluid line can be connected with its line end to the connecting nozzle of the adapter in such a manner that the projection protrudes inwardly into the lumen of the fluid line to form two tubular chambers of the fluid line mutually separated by the projection and adapted for guiding through flowing fluid.
Abstract:
An adapter includes several connecting nozzles. Free nozzle ends of the connecting nozzles are adapted to be connected to line ends of fluid lines. The adapter includes, for guiding flowing fluid in and then out, two mutually separated, tubular flow channels. Moreover, the adapter includes a projection, which extends from the nozzle end with a length to a free projection end remote therefrom. A fluid line system formed by means of the adapter comprises, furthermore, a fluid line with, enveloped by a wall, a lumen. The fluid line can be connected with its line end to the connecting nozzle of the adapter in such a manner that the projection protrudes inwardly into the lumen of the fluid line to form two tubular chambers of the fluid line mutually separated by the projection and adapted for guiding through flowing fluid.
Abstract:
The method serves for monitoring and/or checking a pressure device having a lumen surrounded by a wall for conveying and/or storing a fluid. To this end, the method comprises a step of registering both a strain of a first wall segment as well as also a strain of at least a second wall segment spaced from the first wall segment, for ascertaining a strain deviation value representing a difference between the strain of the first wall segment and the strain of the second wall segment, as well as a step of using the strain deviation value for ascertaining damage to the wall, as a result of plastic deformation of the wall and/or as a result of wear of the wall. The measuring system of the invention comprises supplementally to the pressure device a first strain sensor affixed on the first wall segment for producing a first strain signal dependent on a time variable strain of the first wall segment as well as at least a second strain sensor affixed on the second wall segment for producing a second strain signal dependent on a time variable strain of the second wall segment. Moreover, the measuring system comprises a transmitter electronics electrically coupled both with the first strain sensor as well as also the second strain sensor. The transmitter electronics is adapted to receive both the first strain signal as well as also the second strain signal as well as to ascertain, with application of the strain signals, damage to the wall.
Abstract:
Method for monitoring and/or checking a pressure device having a lumen surrounded by a wall for conveying and/or storing a fluid. For such purpose, the method comprises a step of registering a strain, of the wall, by means of a strain gage, respectively a strain sensor formed therewith, affixed outwardly on the wall, for ascertaining a strain value representing the strain of the wall, as well as a step of using the strain value for ascertaining damage to the wall, as a result of plastic deformation of the wall and/or as a result of wear of the wall. A measuring system of the invention comprises supplementally to the pressure device at least one strain sensor affixed on a wall segment of the wall for producing a strain signal dependent on a time variable strain, of the wall segment as well as a transmitter electronics electrically coupled with the strain sensor. The transmitter electronics is adapted to receive the strain signal as well as with the application of the strain signal to ascertain damage to the wall.