SYSTEMS AND METHODS FOR ARTIFICIAL INTELLIGENCE-BASED IMAGE ANALYSIS FOR CANCER ASSESSMENT

    公开(公告)号:US20220398724A1

    公开(公告)日:2022-12-15

    申请号:US17762796

    申请日:2020-08-21

    Abstract: Presented herein are systems and methods that provide for automated analysis of medical images to determine a predicted disease status (e.g., prostate cancer status) and/or a value corresponding to predicted risk of the disease status for a subject. The approaches described herein leverage artificial intelligence (AI) to analyze intensities of voxels in a functional image, such as a PET image, and determine a risk and/or likelihood that a subject's disease, e.g., cancer, is aggressive. The approaches described herein can provide predictions of whether a subject that presents a localized disease has and/or will develop aggressive disease, such as metastatic cancer. These predictions are generated in a fully automated fashion and can be used alone, or in combination with other cancer diagnostic metrics (e.g., to corroborate predictions and assessments or highlight potential errors). As such, they represent a valuable tool in support of improved cancer diagnosis and treatment.

    SYSTEMS AND METHODS FOR ARTIFICIAL INTELLIGENCE-BASED IMAGE ANALYSIS FOR CANCER ASSESSMENT

    公开(公告)号:US20210093249A1

    公开(公告)日:2021-04-01

    申请号:US16734609

    申请日:2020-01-06

    Abstract: Presented herein are systems and methods that provide for automated analysis of medical images to determine a predicted disease status (e.g., prostate cancer status) and/or a value corresponding to predicted risk of the disease status for a subject. The approaches described herein leverage artificial intelligence (AI) to analyze intensities of voxels in a functional image, such as a PET image, and determine a risk and/or likelihood that a subject's disease, e.g., cancer, is aggressive. The approaches described herein can provide predictions of whether a subject that presents a localized disease has and/or will develop aggressive disease, such as metastatic cancer. These predictions are generated in a fully automated fashion and can be used alone, or in combination with other cancer diagnostic metrics (e.g., to corroborate predictions and assessments or highlight potential errors). As such, they represent a valuable tool in support of improved cancer diagnosis and treatment.

Patent Agency Ranking