Abstract:
A mobile device transmits data over a shared spectrum in an uplink channel to a base station in a contention-based access scheme. The mobile device obtains data to be wirelessly transmitted over the shared spectrum in the uplink channel to the base station. The uplink channel is formatted with a frame/subframe structure with a predetermined timing. The mobile device determines whether the shared spectrum is free for transmission according to a listen before transmit procedure. When the shared spectrum is free for transmission, the mobile device contends with other mobile device to gain access to the uplink channel. After gaining access to the uplink channel, the mobile device transmits the data over the shared spectrum in the uplink channel to the base station.
Abstract:
Data to be transmitted to a user device may be received at a network device. It may be determined that the user device has network connectivity to the network device via a wide area wireless network connection and that the user device also separately has connectivity to the network device via a local area wireless network connection to an access point. The data may be split so that some portion of the data is to be transmitted by the wide area wireless network connection and another portion of the data is to be transmitted by the local area wireless network connection.
Abstract:
A method is provided for minimizing cross-technology interference with data transmissions from a wireless device in a shared spectrum. The wireless device obtains data to be wirelessly transmitted in a transmission burst in a first radio access technology (RAT) format over a shared spectrum. The wireless device generates a preamble comprising assistance information related to the transmission burst. The preamble comprises a first preamble portion in the first RAT format and a second preamble portion in a second RAT format. The wireless device transmits the preamble followed by the transmission burst.
Abstract:
An access point (AP) transmits Wi-Fi transmit frames according to a Wi-Fi protocol and Long-Term Evolution-Unlicensed (LTE-U) transmit frames according to an LTE-U protocol in a shared channel bandwidth that encompasses unlicensed channel bandwidth associated with the LTE-U protocol. The AP assigns a Wi-Fi access category to each Wi-Fi transmit frame and assigns to each LTE-U transmit frame an LTE-U access category. The AP schedules Wi-Fi and LTE-U transmit opportunities for the Wi-Fi transmit frames and the LTE-U transmit frames, respectively, in the shared channel bandwidth based on the Wi-Fi and LTE-U access categories. The scheduling includes, for each scheduled LTE-U transmit opportunity: constructing a Wi-Fi quiet message commanding Wi-Fi clients of the AP not to transmit in the shared channel bandwidth during the LTE-U transmit opportunity; and scheduling the Wi-Fi quiet message for transmission to the Wi-Fi clients.
Abstract:
A first network device may operate as a base station in a wireless wide area network (WWAN) and may establish a WWAN connection with a user device. A media access control (MAC) address of the user device may be obtained and sent to a second network device which operates an access point for a wireless local area network (WLAN). An acknowledgement containing a first service set identifier of the WLAN may be received from the second network device and sent to the user device to set up a secondary connection. An identifier for ordered data communication may used to enable in order communication through both the first and the second network devices. Data to be transmitted to the user device may be split into a first portion and a second portion, and transmitted through the WWAN connection and to the second network device for transmission to the user device via the WLAN respectively.
Abstract:
An LAA-LTE wireless device obtains data to be transmitted in subframes over a shared spectrum. The wireless device transmits a reservation message over the shared spectrum. The reservation message indicates that an initial synchronization message will be retransmitted a specified number of times at specified intervals, such as with a predetermined number of subframes between each retransmitted synchronization message. The wireless device transmits the initial synchronization message over the shared spectrum.
Abstract:
A controller controls access points (APs) in a network of APs. The controller causes the first AP to establish an Internet Protocol (IP) tunnel with a router connected with a wired network and over which data packets are routed between the wired network and a client device wirelessly connected to the first AP. The controller receives a roam indication that the client device is wirelessly connected with a second AP. In response to the indication, the controller instructs the first AP to maintain the IP tunnel with the router and instructs the second AP to establish an inter-AP tunnel with the first AP in order to route traffic between the wired network and the client device over both the IP tunnel and the inter-AP tunnel.
Abstract:
A first wireless device determines the duration of a clear channel assessment interval based on feedback signals before transmitting data to a second wireless device. The first wireless device receives feedback signals, such as acknowledgement (ACK) and negative acknowledgement (NAK) signals, from one or more second wireless devices. The first wireless device determines a ratio of NAK/ACK signals in the feedback signals for a predetermined amount of time. The first wireless device determines whether the wireless medium is free by monitoring for wireless signals during a clear channel assessment interval. The duration of the clear channel assessment interval is based on the ratio of NAK/ACK signals. If the wireless medium is free for the duration of the clear channel assessment, the first wireless device wirelessly transmits data to at least one of the second wireless devices.
Abstract:
A mobile device obtains data to be wirelessly transmitted over a shared spectrum in an uplink channel to a base station. The uplink channel is formatted with a frame/subframe structure with a predetermined timing. The mobile device determines whether the shared spectrum is free for transmission according to a Listen Before Transmit procedure. When the shared spectrum is free for transmission, the mobile device selects a start time in the uplink channel that mitigates interference from other mobile devices in proximity to the mobile device. Beginning at the start time, the mobile device transmits the data over the shared spectrum in the uplink channel to the base station.
Abstract:
A wireless device accesses a shared spectrum equitably in a self-organizing manner by determining success indices and adjusting courtesy parameters. The wireless device transmits wireless transmissions in a frame subframe structure over a shared spectrum, each of the subframes bounded by subframe boundaries at predetermined time intervals. The success index represents a measure of success in transmitting wireless transmissions in the shared spectrum. The wireless device performs a clear channel assessment to determine whether the shared spectrum is available at the end of the clear channel assessment time interval. The wireless device determines a gap interval between the end of the clear channel assessment time interval and the next subframe boundary and transmits the success index during the gap interval.