Abstract:
In one embodiment, a method includes receiving at an analytics module operating at a network device, network traffic data collected from a plurality of sensors distributed throughout a network and installed in network components to obtain the network traffic data, identifying at the analytics module, Domain Name System (DNS) exchanges within the network, associating at the analytics module, the DNS exchanges with process, user, and host information, and identifying at the analytics module, anomalies in the DNS exchanges. An apparatus and logic are also disclosed herein.
Abstract:
In one embodiment, a method includes receiving at an analytics module operating at a network device, network traffic data collected from a plurality of sensors distributed throughout a network and installed in network components to obtain the network traffic data, identifying at the analytics module, Domain Name System (DNS) exchanges within the network, associating at the analytics module, the DNS exchanges with process, user, and host information, and identifying at the analytics module, anomalies in the DNS exchanges. An apparatus and logic are also disclosed herein.
Abstract:
In one embodiment, a method includes receiving network data at an analytics device, grouping features of the network data into multivariate bins, generating a density for each of the multivariate bins, computing a rareness metric for each of the multivariate bins based on a probability of obtaining a feature in a bin and the probability for all other of the multivariate bins with equal or smaller density, and identifying anomalies based on computed rareness metrics. An apparatus and logic are also disclosed herein.
Abstract:
In one embodiment, a method includes receiving network data at an analytics device, identifying features for the network data at the analytics device, grouping each of the features into bins of varying width at the analytics device, the bins comprising bin boundaries selected based on a probability that data within each of the bins follows a discrete uniform distribution, and utilizing the binned features for anomaly detection. An apparatus and logic are also disclosed herein.
Abstract:
In one embodiment, a method includes receiving network data at an analytics device, identifying features for the network data at the analytics device, grouping each of the features into bins of varying width at the analytics device, the bins comprising bin boundaries selected based on a probability that data within each of the bins follows a discrete uniform distribution, and utilizing the binned features for anomaly detection. An apparatus and logic are also disclosed herein.
Abstract:
In one embodiment, a method includes receiving at an analytics module operating at a network device, network traffic data collected from a plurality of sensors distributed throughout a network and installed in network components to obtain the network traffic data from packets transmitted to and from the network components and monitor network flows within the network from multiple perspectives in the network, processing the network traffic data at the analytics module, the network traffic data comprising process information, user information, and host information, and identifying at the analytics module, anomalies within the network traffic data based on dynamic modeling of network behavior. An apparatus and logic are also disclosed herein.