Abstract:
Aspects of the subject disclosure may include, for example, a wireless power receiver configured to receive a wireless power signal from a power transmitting unit. A wireless radio unit is configured to communicate with the power transmitting unit. A controllable rectifier circuit is configured to rectify the wireless power signal. The controllable rectifier circuit can include a rectifier configured to generate a rectified voltage from the wireless power signal, based on switch control signals. A rectifier control circuit is configured to generate the switch control signals and to generate first control data that indicates a first rectifier duty cycle of the switch control signals. The wireless radio unit sends the first control data to the power transmitting unit. Other embodiments are disclosed.
Abstract:
A power converter is described herein. The power converter may be configured to enable a high-side switch when a resonating voltage at a switching net coupled between the high-side switch and a low-side switch reaches a maximum voltage while the power converter operates in a discontinuous current mode. The power converter may sample the resonating voltage at the switching net at a time when the high-side switch is enabled and compare the sampled voltage with a previously-sampled voltage of the switching net. A frequency of an oscillating signal that drives the activation of the high-side switch is periodically adjusted based on the comparison, which causes the high-side switch to be enabled at different times with respect to the resonating voltage. The frequency of the oscillating signal is continuously adjusted such that the high-side switch is enabled at time(s) where the resonating voltage reaches (or is near) its maximum voltage.
Abstract:
Aspects of the subject disclosure may include, for example, a wireless power transmitter that includes a coil assembly configured to transmit a power signal to a power receiving unit of at least one wireless power client. The coil assembly includes a first coil and a second coil configured to generate the power signal via a combined magnetic field. A first driver is configured to generate a first current signal on the first coil. A second driver is configured to generate a second current signal on the second coil at a first controllable phase relative to the first current signal to control the combined magnetic field. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a wireless power transmitter that includes a coil assembly configured to transmit a power signal to a power receiving unit of at least one wireless power client. The coil assembly includes a first coil and a second coil configured to generate the power signal via a combined magnetic field. A first driver is configured to generate a first current signal on the first coil. A second driver is configured to generate a second current signal on the second coil at a first controllable phase relative to the first current signal to control the combined magnetic field. Other embodiments are disclosed.
Abstract:
Aspects of the subject disclosure may include, for example, a wireless power receiver configured to receive a wireless power signal from a power transmitting unit. A wireless radio unit is configured to communicate with the power transmitting unit. A controllable rectifier circuit is configured to rectify the wireless power signal. The controllable rectifier circuit can include a rectifier configured to generate a rectified voltage from the wireless power signal, based on switch control signals. A rectifier control circuit is configured to generate the switch control signals and to generate first control data that indicates a first rectifier duty cycle of the switch control signals. The wireless radio unit sends the first control data to the power transmitting unit. Other embodiments are disclosed.