Abstract:
A photoplethysmographic (PPG) device is disclosed. The PPG device can include one or more light emitters and one or more light sensors to generate the multiple light paths for measuring a PPG signal and perfusion indices of a user. The multiple light paths between each pair of light emitters and light detectors can include different separation distances to generate both an accurate PPG signal and a perfusion index value to accommodate a variety of users and usage conditions. In some examples, the multiple light paths can include the same separation distances for noise cancellation due to artifacts resulting from, for example, tilt and/or pull of the device, a user's hair, a user's skin pigmentation, and/or motion. The PPG device can further include one or more lenses and/or reflectors to increase the signal strength and/or and to obscure the optical components and associated wiring from being visible to a user's eye.
Abstract:
This relates to a device that detects a user's motion and gesture input through the movement of one or more of the user's hand, arm, wrist, and fingers, for example, to provide commands to the device or to other devices. The device can include a plurality of myoelectric sensors configured to detect one or more electrical signals from a body part of a user indicative of one or more movements. A plurality of signals indicative of the detected one or more electrical signals may be generated. The device may also include a wireless communication transmitter configured to communicate with a peripheral device and a processor. The processor may be configured to receive the plurality of signals from the plurality of myoelectric sensors, use the plurality of signals together to determine a gesture, and communicate one or more of: the plurality of signals and the gesture to the peripheral device.
Abstract:
This relates to a device that detects a user's motion and gesture input through the movement of one or more of the user's hand, arm, wrist, and fingers, for example, to provide commands to the device or to other devices. The device can be attached to, resting on, or touching the user's wrist, ankle or other body part. One or more optical sensors, inertial sensors, mechanical contact sensors, and myoelectric sensors can detect movements of the user's body. Based on the detected movements, a user gesture can be determined. The device can interpret the gesture as an input command, and the device can perform an operation based on the input command. By detecting movements of the user's body and associating the movements with input commands, the device can receive user input commands through another means in addition to, or instead of, voice and touch input, for example.
Abstract:
A photoplethysmographic (PPG) device is disclosed. The PPG device can include one or more light emitters and one or more light sensors to generate the multiple light paths for measuring a PPG signal and perfusion indices of a user. The multiple light paths between each pair of light emitters and light detectors can include different separation distances to generate both an accurate PPG signal and a perfusion index value to accommodate a variety of users and usage conditions. In some examples, the multiple light paths can include the same separation distances for noise cancellation due to artifacts resulting from, for example, tilt and/or pull of the device, a user's hair, a user's skin pigmentation, and/or motion. The PPG device can further include one or more lenses and/or reflectors to increase the signal strength and/or and to obscure the optical components and associated wiring from being visible to a user's eye.