Abstract:
Techniques are described for managing program execution capacity, such as for a group of computing nodes that are provided for executing one or more programs for a user. In some situations, dynamic program execution capacity modifications for a computing node group that is in use may be performed periodically or otherwise in a recurrent manner, such as to aggregate multiple modifications that are requested or otherwise determined to be made during a period of time, and with the aggregation of multiple determined modifications being able to be performed in various manners. Modifications may be requested or otherwise determined in various manners, including based on dynamic instructions specified by the user, and on satisfaction of triggers that are previously defined by the user. In some situations, the techniques are used in conjunction with a fee-based program execution service that executes multiple programs on behalf of multiple users of the service.
Abstract:
A system that implements a scaleable data storage service may maintain tables in a non-relational data store on behalf of clients. Each table may include multiple items. Each item may include one or more attributes, each containing a name-value pair. Attribute values may be scalars or sets of numbers or strings. The system may provide an API usable to request that values of one or more of an item's attributes be updated. An update request may be conditional on expected values of one or more item attributes (e.g., the same or different item attributes). In response to a request to update the values of one or more item attributes, the previous values and/or updated values may be optionally returned for the updated item attributes or for all attributes of an item targeted by an update request. Items stored in tables may be indexed using a simple or composite primary key.
Abstract:
A system that implements a scalable data storage service may maintain tables in a non-relational data store on behalf of clients. The system may provide a Web services interface through which service requests are received, and an API usable to request that a table be created, deleted, or described; that an item be stored, retrieved, deleted, or its attributes modified; or that a table be queried (or scanned) with filtered items and/or their attributes returned. An asynchronous workflow may be invoked to create or delete a table. Items stored in tables may be partitioned and indexed using a simple or composite primary key. The system may not impose pre-defined limits on table size, and may employ a flexible schema. The service may provide a best-effort or committed throughput model. The system may automatically scale and/or re-partition tables in response to detecting workload changes, node failures, or other conditions or anomalies.
Abstract:
A system that implements a scalable data storage service may maintain tables in a non-relational data store on behalf of clients. The system may provide a Web services interface through which service requests are received, and an API usable to request that a table be created, deleted, or described; that an item be stored, retrieved, deleted, or its attributes modified; or that a table be queried (or scanned) with filtered items and/or their attributes returned. An asynchronous workflow may be invoked to create or delete a table. Items stored in tables may be partitioned and indexed using a simple or composite primary key. The system may not impose pre-defined limits on table size, and may employ a flexible schema. The service may provide a best-effort or committed throughput model. The system may automatically scale and/or re-partition tables in response to detecting workload changes, node failures, or other conditions or anomalies.
Abstract:
Techniques are described for managing program execution capacity, such as for a group of computing nodes that are provided for executing one or more programs for a user. In some situations, dynamic program execution capacity modifications for a computing node group that is in use may be performed periodically or otherwise in a recurrent manner, such as to aggregate multiple modifications that are requested or otherwise determined to be made during a period of time. In addition, various operations may be performed to attribute causality information or other responsibility for particular program execution capacity modifications that are performed, including by attributing a single event as causing one capacity modification, and a combination of multiple events as possible causes for another capacity modification. The techniques may in some situations be used in conjunction with a fee-based program execution service that executes multiple programs on behalf of multiple users of the service.
Abstract:
Techniques are described for managing program execution capacity, such as for a group of computing nodes that are provided for executing one or more programs for a user. In some situations, dynamic program execution capacity modifications for a computing node group that is in use may be performed periodically or otherwise in a recurrent manner, such as to aggregate multiple modifications that are requested or otherwise determined to be made during a period of time. In addition, various operations may be performed to attribute causality information or other responsibility for particular program execution capacity modifications that are performed, including by attributing a single event as causing one capacity modification, and a combination of multiple events as possible causes for another capacity modification. The techniques may in some situations be used in conjunction with a fee-based program execution service that executes multiple programs on behalf of multiple users of the service.
Abstract:
Techniques are described for managing program execution capacity, such as for a group of computing nodes that are provided for executing one or more programs for a user. In some situations, dynamic program execution capacity modifications for a computing node group that is in use may be performed periodically or otherwise in a recurrent manner, such as to aggregate multiple modifications that are requested or otherwise determined to be made during a period of time. In addition, various operations may be performed to attribute causality information or other responsibility for particular program execution capacity modifications that are performed, including by attributing a single event as causing one capacity modification, and a combination of multiple events as possible causes for another capacity modification. The techniques may in some situations be used in conjunction with a fee-based program execution service that executes multiple programs on behalf of multiple users of the service.
Abstract:
Techniques are described for managing program execution capacity, such as for a group of computing nodes that are provided for executing one or more programs for a user. In some situations, dynamic program execution capacity modifications for a computing node group that is in use may be performed periodically or otherwise in a recurrent manner, such as to aggregate multiple modifications that are requested or otherwise determined to be made during a period of time, and with the aggregation of multiple determined modifications being able to be performed in various manners. Modifications may be requested or otherwise determined in various manners, including based on dynamic instructions specified by the user, and on satisfaction of triggers that are previously defined by the user. In some situations, the techniques are used in conjunction with a fee-based program execution service that executes multiple programs on behalf of multiple users of the service.
Abstract:
A system that implements a scalable data storage service may maintain tables in a non-relational data store on behalf of clients. The system may provide a Web services interface through which service requests are received, and an API usable to request that a table be created, deleted, or described; that an item be stored, retrieved, deleted, or its attributes modified; or that a table be queried (or scanned) with filtered items and/or their attributes returned. An asynchronous workflow may be invoked to create or delete a table. Items stored in tables may be partitioned and indexed using a simple or composite primary key. The system may not impose pre-defined limits on table size, and may employ a flexible schema. The service may provide a best-effort or committed throughput model. The system may automatically scale and/or re-partition tables in response to detecting workload changes, node failures, or other conditions or anomalies.
Abstract:
A system that implements a scaleable data storage service may maintain tables in a non-relational data store on behalf of clients. Each table may include multiple items. Each item may include one or more attributes, each containing a name-value pair. Attribute values may be scalars or sets of numbers or strings. The system may provide an API usable to request that values of one or more of an item's attributes be updated. An update request may be conditional on expected values of one or more item attributes (e.g., the same or different item attributes). In response to a request to update the values of one or more item attributes, the previous values and/or updated values may be optionally returned for the updated item attributes or for all attributes of an item targeted by an update request. Items stored in tables may be indexed using a simple or composite primary key.