Abstract:
A system and method for efficient arbitration of memory access requests are described. One or more functional units generate memory access requests for a partitioned memory. An arbitration unit stores the generated requests and selects a given one of the stored requests. The arbitration unit identifies a given partition of the memory which stores a memory location targeted by the selected request. The arbitration unit determines whether one or more other stored requests access memory locations in the given partition. The arbitration unit sends each of the selected memory access request and the identified one or more other memory access requests to the memory to be serviced out of order.
Abstract:
A method for use in a processor for arbitrating between multiple processes to select wavefronts for execution on a shader core is provided. The processor includes a compute pipeline configured to issue wavefronts to the shader core for execution, a hardware queue descriptor associated with the compute pipeline, and the shader core. The shader core is configured to execute work for the compute pipeline corresponding to a first memory queue descriptor executed using data for the first memory queue descriptor that is loaded into a first hardware queue descriptor. The processor is configured to detect a context switch condition, and, responsive to the context switch condition, perform a context switch operation including loading data for a second memory queue descriptor into the first hardware queue descriptor. The shader core is configured to execute work corresponding to the second memory queue descriptor that is loaded into the first hardware queue descriptor.
Abstract:
Methods and apparatus are described. A method includes an accelerated processing device running a process. When a maximum time interval during which the process is permitted to run expires before the process completes, the accelerated processing device receives an operating-system-initiated instruction to stop running the process. The accelerated processing device stops the process from running in response to the received operating-system-initiated instruction.
Abstract:
Methods and apparatus are described. A method includes an accelerated processing device running a process. When a maximum time interval during which the process is permitted to run expires before the process completes, the accelerated processing device receives an operating-system-initiated instruction to stop running the process. The accelerated processing device stops the process from running in response to the received operating-system-initiated instruction.
Abstract:
A system and method for efficient arbitration of memory access requests are described. One or more functional units generate memory access requests for a partitioned memory. An arbitration unit stores the generated requests and selects a given one of the stored requests. The arbitration unit identifies a given partition of the memory which stores a memory location targeted by the selected request. The arbitration unit determines whether one or more other stored requests access memory locations in the given partition. The arbitration unit sends each of the selected memory access request and the identified one or more other memory access requests to the memory to be serviced out of order.
Abstract:
A method for use in a processor for arbitrating between multiple processes to select wavefronts for execution on a shader core is provided. The processor includes a compute pipeline configured to issue wavefronts to the shader core for execution, a hardware queue descriptor associated with the compute pipeline, and the shader core. The shader core is configured to execute work for the compute pipeline corresponding to a first memory queue descriptor executed using data for the first memory queue descriptor that is loaded into a first hardware queue descriptor. The processor is configured to detect a context switch condition, and, responsive to the context switch condition, perform a context switch operation including loading data for a second memory queue descriptor into the first hardware queue descriptor. The shader core is configured to execute work corresponding to the second memory queue descriptor that is loaded into the first hardware queue descriptor.