Abstract:
Techniques are disclosed for managing image capture and processing in a multi-camera imaging system. In such a system, a pair of cameras each may output a sequence of frames representing captured image data. The cameras' output may be synchronized to each other to cause synchronism in the image capture operations of the cameras. The system may assess image quality of frames output from the cameras and, based on the image quality, designate a pair of the frames to serve as a “reference frame pair.” Thus, one frame from the first camera and a paired frame from the second camera will be designated as the reference frame pair. The system may adjust each reference frame in the pair using other frames from their respective cameras. The reference frames also may be processed by other operations within the system, such as image fusion.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
Systems, methods, and devices for dual processing of raw image data by main image processing and alternative image processing capabilities of an electronic device are provided. According to an embodiment, alternative image processing may analyze a first copy of a frame of raw image data before a second copy of the frame of raw image data is processed by main image processing. Thereafter, the main image processing may process the second copy of the frame of raw image. The main image processing may be calibrated based at least in part on the analysis of the first copy of the frame of raw image data.
Abstract:
Systems, methods, and devices for dual processing of raw image data by main image processing and alternative image processing capabilities of an electronic device are provided. According to an embodiment, alternative image processing may analyze a first copy of a frame of raw image data before a second copy of the frame of raw image data is processed by main image processing. Thereafter, the main image processing may process the second copy of the frame of raw image. The main image processing may be calibrated based at least in part on the analysis of the first copy of the frame of raw image data.
Abstract:
Techniques are disclosed for managing image capture and processing in a multi-camera imaging system. In such a system, a pair of cameras each may output a sequence of frames representing captured image data. The cameras' output may be synchronized to each other to cause synchronism in the image capture operations of the cameras. The system may assess image quality of frames output from the cameras and, based on the image quality, designate a pair of the frames to serve as a “reference frame pair.” Thus, one frame from the first camera and a paired frame from the second camera will be designated as the reference frame pair. The system may adjust each reference frame in the pair using other frames from their respective cameras. The reference frames also may be processed by other operations within the system, such as image fusion.
Abstract:
In an embodiment, an electronic device may be configured to capture still frames during video capture, but may capture the still frames in the 4×3 aspect ratio and at higher resolution than the 16×9 aspect ratio video frames. The device may interleave high resolution, 4×3 frames and lower resolution 16×9 frames in the video sequence, and may capture the nearest higher resolution, 4×3 frame when the user indicates the capture of a still frame. Alternatively, the device may display 16×9 frames in the video sequence, and then expand to 4×3 frames when a shutter button is pressed. The device may capture the still frame and return to the 16×9 video frames responsive to a release of the shutter button.
Abstract:
Special blend operations for wide area-of-view image generation utilizing a “floating auto exposure” scheme are described. Pixel values in the two images being stitched together are blended within a transition band around a “seam.” identified in the overlap region between the images after changes in exposure and/or color saturation are accounted for. In some embodiments, changes in exposure and/or color saturation are accounted for through the use of one or more exposure mapping curves, the selection and use of which are based, at least in part, on a determined “Exposure Ratio” value, i.e., the amount that the camera's exposure settings have deviated from their initial capture settings. In other embodiments, the Exposure Ratio value is also used to determine regions along the seam where either: alpha blending, Poisson blending—or a combination of the two—should be used to blend in the transitional areas on each side of the seam.
Abstract:
Special blend operations for wide area-of-view image generation utilizing a “floating auto exposure” scheme are described. Pixel values in the two images being stitched together are blended within a transition band around a “seam.” identified in the overlap region between the images after changes in exposure and/or color saturation are accounted for. In some embodiments, changes in exposure and/or color saturation are accounted for through the use of one or more exposure mapping curves, the selection and use of which are based, at least in part, on a determined “Exposure Ratio” value, i.e., the amount that the camera's exposure settings have deviated from their initial capture settings. In other embodiments, the Exposure Ratio value is also used to determine regions along the seam where either: alpha blending, Poisson blending—or a combination of the two—should be used to blend in the transitional areas on each side of the seam.
Abstract:
A controller for an image sensor includes a mode selector that receives a selection between image capture mode and data capture mode. An exposure sensor collects exposure data for a scene falling on the image sensor. A command interface sends commands to the image sensor to cause the image sensor to capture an image with a rolling reset shutter operation in which an integration interval for the image sensor is set based on the exposure data if the image capture mode is selected. The integration interval for the image sensor is set to less than two row periods, preferably close to one row period, without regard to the exposure data if the data capture mode is selected. An analog gain may be increased to as large a value as possible in data capture mode. All pixels in a row may be summed before AD conversion in data capture mode.
Abstract:
A method for automatic image capture control and digital imaging is described. An image buffer is initialized to store a digital image produced by an image sensor, through allocation of a region in memory for the buffer that is large enough to store a full resolution frame from the image sensor. While non-binning streaming frames, from the sensor and in the buffer, are being displayed in preview, the sensor is reconfigured into binning mode, and then binned streaming frames are processed in the buffer, but without allocating a smaller region in memory for the buffer. Other embodiments are also described and claimed.