Abstract:
The invention relates to a method wherein the speed of the rotor of an electronically commutated synchronous machine is determined or controlled by means of one or more rotor position sensors, in particular, three rotor position sensors that are fixed to the stator, and a time measuring device, wherein the angle traveled by the rotor and the time lapsed during the travel are measured, wherein the measured angle traveled by the rotor is corrected by means of one or more first correction constants, in particular a differential for correcting for the influence of non-uniform positioning or expansion of the position marking of the rotor, and a circuit configuration for actuating an electronically commutated synchronous machine.
Abstract:
A method of electronic brake force distribution in a two-axle four-wheel vehicle 1 effects a compensation of the speed differences between left and right vehicle side during cornering. To this end, a compensation speed is calculated for the curve-inward rear wheel 6 and added to the individual wheel speed of the rear wheel 6 to be compared with a vehicle reference speed. The individual wheel reference speed of this wheel, which is this way increased in relation to the individual wheel speed of the curve-inward rear wheel 6, prevents a premature activation of electronic brake force distribution because the produced individual wheel reference speed is closer to the vehicle reference speed than the individual wheel speed. This permits better utilizing brake force during cornering.
Abstract:
A method of electronic brake force distribution is applied to contribute to vehicle stability even in the event of failure of the system that detects failure of the front-axle brake circuit (13) in a vehicle (1). The method involves initiating a pressure maintenance or pressure reduction phase only after the standards with respect to a minimum vehicle deceleration upon brake circuit failure are met. This way, it is ensured that the standards are observed, on the one hand, and locking of the rear wheels (6,7) before the front wheels (4,5) is prevented with great likelihood, on the other hand. Thus, electronic brake force distribution (EBD) is switched over to less sensitive criteria. This makes allowance for both possibilities in the event of a failure of a pressure switch (15), i.e., that the front-axle brake circuit (13) is intact or that it is defective.
Abstract:
The invention relates to a method wherein the speed of the rotor of an electronically commutated synchronous machine is determined or controlled by means of one or more rotor position sensors, in particular, three rotor position sensors that are fixed to the stator, and a time measuring device, wherein the angle traveled by the rotor and the time lapsed during the travel are measured, wherein the measured angle traveled by the rotor is corrected by means of one or more first correction constants, in particular a differential for correcting for the influence of non-uniform positioning or expansion of the position marking of the rotor, and a circuit configuration for actuating an electronically commutated synchronous machine.
Abstract:
In a method for actuating an electrically actuatable parking brake system, the brake torque on the braked wheels is reduced in order to prevent the wheels braked by the parking brake from locking when the vehicle is traveling at a vehicle speed exceeding a predetermined minimum speed and the wheel slip exceeds a defined threshold.