摘要:
A method of reducing noise in a volume-rendered image includes generating a volume-rendered image from data, identifying a pixel location of suspected noise in the volume-rendered image, and calculating a voxel location that corresponds to the pixel location and intersects a rendered surface in voxel space. The method includes implementing a region-growing algorithm using the voxel location as a seed point to identify a plurality of voxels in a suspected noisy region. The method includes modifying the data to generate modified data by assigning lower opacity values to the plurality of voxels. The method includes generating a modified volume-rendered image from the modified data and displaying the modified volume-rendered image.
摘要:
Noise may be reduced in ultrasound images that comprise at least a fluid area and a tissue area. The image data comprises pixels having input intensity values. Edge pixels associated with an edge within the tissue area are detected. The input intensity values of at least a portion of non-edge pixels are modulated to be less than the input intensity value of the none-edge pixel to form a selectively enhanced image for display.
摘要:
A method for performing a volume rendering of an image uses a computer having a processor, memory, and a display. The method includes globally segmenting image data that represents an image to thereby locate boundaries in the image, determining regional opacity functions using the image data in a vicinity of the boundaries, and volume rendering the image data utilizing the regional opacity functions to display an image. The method provides a presentation of improved images of structures. These improved images are obtained using a regional optimization of the opacity function such that the perceived object boundary coincides more closely with a segmented boundary.
摘要:
An ultrasound system includes an ultrasound probe having a transducer array for acquiring ultrasound data and a first beamformer for partially beamforming the information received from the transducer array, and a portable host system in communication with the ultrasound probe, the portable host system including a second beamformer to perform additional beamforming on the partially beamformed data received from the ultrasound probe.
摘要:
A method for performing a volume rendering of an image uses a computer having a processor, memory, and a display. The method includes globally segmenting image data that represents an image to thereby locate boundaries in the image, determining regional opacity functions using the image data in a vicinity of the boundaries, and volume rendering the image data utilizing the regional opacity functions to display an image. The method provides a presentation of improved images of structures. These improved images are obtained using a regional optimization of the opacity function such that the perceived object boundary coincides more closely with a segmented boundary.
摘要:
A medical imaging system includes an image sensor that receives imaging signals from a region of interest, a memory coupled to the image sensor, and a processor coupled to the memory. The memory stores image data derived from the imaging signals for first and second sub-regions of the region of interest acquired during a first and second occurrence of a physiologic cycle. The processor initiates display of the first image data while the second image data is being acquired and initiates display of the first image data joined with the second image data after the second image data is acquired.
摘要:
An ultrasound system includes an ultrasound probe having a transducer array for acquiring ultrasound data and a first beamformer for partially beamforming the information received from the transducer array, and a portable host system in communication with the ultrasound probe, the portable host system including a second beamformer to perform additional beamforming on the partially beamformed data received from the ultrasound probe.
摘要:
An ultrasound system is provided that includes a display processor that accesses data volumes stored in an image buffer successively to control generation of at least one of 2D and 3D renderings based on display parameters. The display processor obtains from the image buffer a first data volume defined based on first scan parameter values, while a probe acquires ultrasound information for a second data volume that is entered into the image buffer. The second data volume is defined based on second scan parameter values. A navigation view presents in real time the renderings generated by the display processor with their corresponding 31) orientation. A navigator is provided that controls the display of the navigation view in real time such that, as the user adjusts a display parameter value to change a view plane, images presented in the navigation view are updated to reflect the view plane.