Abstract:
The present invention relates to a process for purifying a gas mixture comprising dinitrogen monoxide and to the use of a gas mixture purified in this way as an oxidant for olefins. In a further embodiment, the present invention also relates to a process for preparing ketones comprising the oxidation of an olefin with a gas mixture which has been purified in accordance with the invention and comprises dinitrogen monoxide.
Abstract:
The present invention relates to a process for purifying a gas mixture G-0 comprising dinitrogen monoxide, at least comprising the absorption of the gas mixture G-0 in an organic solvent, subsequent desorption of a gas mixture G-1 from the laden organic solvent, absorption of the gas mixture G-1 in water and subsequent desorption of a gas mixture G-2 from the laden water, and also to the use of a purified gas mixture which comprises dinitrogen monoxide and is obtainable by such a process as an oxidizing agent for olefins.
Abstract:
The present invention relates to a process for purifying a gas mixture G-0 comprising dinitrogen monoxide, at least comprising the contacting of the gas mixture G-0 with a solvent mixture (I) at least comprising 50% by weight of water based on the overall solvent mixture (1), the pH of the solvent mixture (I) being in the range from 3.5 to 8.0, the desorption of a gas mixture G-1 from a composition (A), the contacting of the gas mixture G-1 with a solvent mixture (11) at least comprising 50% by weight of water based on the overall solvent mixture (11), the pH of the solvent mixture (11) being in the range from 2.0 to 8.0, and the desorption of a gas mixture G-2 from a composition (B), the pH being based in each case on a measurement with a glass electrode, and to the use of gas mixtures obtainable by a process according to the invention as oxidizing agents for olefins.
Abstract:
The present invention relates to a catalytically active composition comprising as active component Pd and Bi and at least one element selected from the group (a) consisting of Rh, Au, Sb, V, Cr, W, Mn, Fe, Co, Ni, Na, Cs and Ba, or Pd, Rh and Bi and optionally an element selected from the group (a′) consisting of Au, Sb, V, Cr, W, Mn, Fe, Co, Ni, Pt, Cu, Ag, Na, Cs, Mg, Ca and Ba. The present invention further provides a process for dehydrogenating hydrocarbons, preferably oxo-functionalized hydrocarbons such as cyclopentanone, cyclohexanone and isovaleraldehyde, using the catalytically active composition.
Abstract:
The present invention relates to a process for purifying a gas mixture G-0 comprising dinitrogen monoxide, at least comprising the contacting of the gas mixture G-0 with a solvent mixture (I) at least comprising 50% by weight of water based on the overall solvent mixture (I), the pH of the solvent mixture (I) being in the range from 3.5 to 8.0, the desorption of a gas mixture G-1 from a composition (A), the contacting of the gas mixture G-1 with a solvent mixture (II) at least comprising 50% by weight of water based on the overall solvent mixture (II), the pH of the solvent mixture (II) being in the range from 2.0 to 8.0, and the desorption of a gas mixture G-2 from a composition (B), the pH being based in each case on a measurement with a glass electrode, and to the use of gas mixtures obtainable by a process according to the invention as oxidizing agents for olefins.