Abstract:
Method and apparatus for in-field digital x-ray analysis of a target body. An x-ray emitter, an x-ray receiver and a portable computer system provide a portable system for in-field digital x-ray inspection and analysis. An x-ray emitter is maneuvered to a location proximate a first side of a target body. An x-ray receiver is also maneuvered to a location proximate a second side of the target body independently of the emitter. X-ray emissions received from the x-ray emitter at the x-ray receiver are sent as data to a portable processor unit coupled to the receiver. A digital image is created based on the data. The digital image is then stored at the portable processor unit.
Abstract:
The engine spectrometer probe and method of using the same of the present invention provides a simple engine spectrometer probe which is both lightweight and rugged, allowing an exhaust plume monitoring system to be attached to a vehicle, such as the space shuttle. The engine spectrometer probe can be mounted to limit exposure to the heat and debris of the exhaust plume. The spectrometer probe 50 comprises a housing 52 having an aperture 55 and a fiber optic cable 60 having a fiber optic tip 65. The fiber optic tip 65 has an acceptance angle 87 and is coupled to the aperture 55 so that the acceptance angle 87 intersects the exhaust plume 30. The spectrometer probe can generate a spectrum signal from light in the acceptance angle 506 and the spectrum signal can be provided to a spectrometer 508.
Abstract:
The present invention provides a ventilated seating system. The ventilated seating system provides a back rest portion including an upper end and a lower end and a perforated duct positioned adjacent to the lower end of the back rest portion. The ventilated seating system further provides a seat base portion including a front end and a back end with the back end positioned adjacent to the perforated duct, and wherein air is drawn across a surface of the seat base portion and a surface of the back rest portion without passing through the seat base and the back rest portions, and into the perforated duct. The ventilated seating system may utilize a pressure differential to draw the air into the duct. To enhance operation, the system may further include adjustable perforated ducts. The adjustable perforated ducts may be adjusted manually or mechanically.
Abstract:
The invention provides a fuel-tank system with an ultrasonic fuel-gauging system for an aircraft. The fuel-tank system includes a fuel tank, a transducer carrier tape covered with a separation barrier, and coupled to a surface of the fuel tank, and at least one ultrasonic transducer attached to the transducer carrier tape. An ultrasonic signal from at least one ultrasonic transducer is reflected from a fuel-air surface and a reflected signal is received by at least one ultrasonic transducer to determine a fuel level in the fuel tank.