-
公开(公告)号:CN112712535A
公开(公告)日:2021-04-27
申请号:CN202110061924.2
申请日:2021-01-18
Applicant: 长安大学
Abstract: 本发明公开了一种基于模拟困难样本的Mask‑RCNN滑坡分割方法,包括步骤:获取研究区域的包含滑坡的遥感影像,对其进行预处理得到训练样本集;构建Mask‑RCNN模型;采用训练样本集对模型进行初步训练,更新模型中的权重;选取训练样本集中的若干标记样本进行模拟困难样本,得到对应的困难样本,再对初步训练后的模型进行训练;获取目标区域的遥感影像作为待测样本,预处理后输入滑坡分割模型,完成滑坡的分割识别。本发明不仅对道路、裸地等易混淆地物有着良好的识别能力,而且在实际研究区域滑坡样本难以满足模型训练要求的情况下,仍能取得较好的检测效果。
-
公开(公告)号:CN112712535B
公开(公告)日:2024-03-22
申请号:CN202110061924.2
申请日:2021-01-18
Applicant: 长安大学
IPC: G06T7/11 , G06T7/32 , G06V10/774 , G06V10/25 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/08
Abstract: 本发明公开了一种基于模拟困难样本的Mask‑RCNN滑坡分割方法,包括步骤:获取研究区域的包含滑坡的遥感影像,对其进行预处理得到训练样本集;构建Mask‑RCNN模型;采用训练样本集对模型进行初步训练,更新模型中的权重;选取训练样本集中的若干标记样本进行模拟困难样本,得到对应的困难样本,再对初步训练后的模型进行训练;获取目标区域的遥感影像作为待测样本,预处理后输入滑坡分割模型,完成滑坡的分割识别。本发明不仅对道路、裸地等易混淆地物有着良好的识别能力,而且在实际研究区域滑坡样本难以满足模型训练要求的情况下,仍能取得较好的检测效果。
-