-
公开(公告)号:CN114358389B
公开(公告)日:2024-09-27
申请号:CN202111520535.8
申请日:2021-12-13
Applicant: 重庆邮电大学
IPC: H02J3/00 , G06Q50/06 , G06N3/0464 , G06N3/049 , G06N3/08
Abstract: 本发明请求保护一种结合VMD分解和时间卷积网络的短期电力负荷预测方法,首先使用变分模态分解(VMD)对原始负荷数据进行处理,将负荷序列分解得到多个本征模态函数(IMF),以降低神经网络预测模型输入数据的复杂程度。然后,分别计算各个IMF分量的样本熵(SE),将相近样本熵值的分量合并为一个新的序列,以减少所需训练的模型数量,最后利用时间卷积网络(TCN)来拟合各个序列的历史数据和预测数据的非线性关系,并叠加各模型的预测结果得到最后的预测值。本发明相比于其他负荷预测传统方法,具有更高的预测精度。
-
公开(公告)号:CN114358389A
公开(公告)日:2022-04-15
申请号:CN202111520535.8
申请日:2021-12-13
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种结合VMD分解和时间卷积网络的短期电力负荷预测方法,首先使用变分模态分解(VMD)对原始负荷数据进行处理,将负荷序列分解得到多个本征模态函数(IMF),以降低神经网络预测模型输入数据的复杂程度。然后,分别计算各个IMF分量的样本熵(SE),将相近样本熵值的分量合并为一个新的序列,以减少所需训练的模型数量,最后利用时间卷积网络(TCN)来拟合各个序列的历史数据和预测数据的非线性关系,并叠加各模型的预测结果得到最后的预测值。本发明相比于其他负荷预测传统方法,具有更高的预测精度。
-