一种基于深度学习的眼底图像病灶分割方法

    公开(公告)号:CN114663440B

    公开(公告)日:2025-04-04

    申请号:CN202210293140.7

    申请日:2022-03-23

    Abstract: 本发明涉及一种基于深度学习的眼底图像病灶分割方法,属于医学影像领域。该方法包括:S1:使用眼底图像作为原始数据集,并采用SMOTE增强原始数据集,分为训练集和验证集;S2:采用U‑Net网络结构作为框架,编码器由Swin‑Transformer构成,解码器部分由DUpsampling模块构成;S3:使用残差网络结构改进编码器部分;S4:训练改进后的U‑Net网络,使用log‑cosh dice loss损失函数来计算病症分割的损失值;S5:根据优化后的U‑Net网络模型,输入测试眼底图像数据,输出病征分割图像。本发明能提高眼底图像细节特征捕捉能力,图像分割的效率和准确性。

    一种基于深度学习的眼底图像病灶分割方法

    公开(公告)号:CN114663440A

    公开(公告)日:2022-06-24

    申请号:CN202210293140.7

    申请日:2022-03-23

    Abstract: 本发明涉及一种基于深度学习的眼底图像病灶分割方法,属于医学影像领域。该方法包括:S1:使用眼底图像作为原始数据集,并采用SMOTE增强原始数据集,分为训练集和验证集;S2:采用U‑Net网络结构作为框架,编码器由Swin‑Transformer构成,解码器部分由DUpsampling模块构成;S3:使用残差网络结构改进编码器部分;S4:训练改进后的U‑Net网络,使用log‑cosh dice loss损失函数来计算病症分割的损失值;S5:根据优化后的U‑Net网络模型,输入测试眼底图像数据,输出病征分割图像。本发明能提高眼底图像细节特征捕捉能力,图像分割的效率和准确性。

Patent Agency Ranking