-
公开(公告)号:CN119763179A
公开(公告)日:2025-04-04
申请号:CN202411662671.4
申请日:2024-11-20
Applicant: 重庆邮电大学
IPC: G06V40/20 , G06V20/40 , G06V10/25 , G06V10/62 , G06V10/74 , G06V10/44 , G06V10/42 , G06V10/52 , G06V10/80 , G06V10/82 , G06N3/0464 , G06N3/045 , G06N3/0442 , G06N3/082 , G06N3/048
Abstract: 本发明属于目标检测技术领域,具体涉及一种基于深度学习的学生课堂行为检测方法;该方法包括:对改进YOLOv11模型进行训练,对训练好的改进YOLOv11模型进行剪枝处理,得到学生课堂检测模型;获取待检测学生课堂视频并将其输入到学生课堂检测模型中进行处理,得到学生课堂行为检测结果;使用改进DeepSORT算法对学生课堂行为检测结果进行处理,实现对学生课堂行为的跟踪本发明增强了网络对全局信息的捕捉能力,提升网络在遮挡和多尺度变化场景下的表现,从而提高了网络的鲁棒性和检测精度,具有良好的应用前景。