-
公开(公告)号:CN113076873B
公开(公告)日:2022-02-22
申请号:CN202110356903.3
申请日:2021-04-01
Applicant: 重庆邮电大学
IPC: G06V20/10 , G06V10/764 , G06V10/774 , G06V10/82 , G06K9/62 , G06N3/04 , G06N3/08
Abstract: 本发明涉及一种基于多阶段训练的农作物病害长尾图像识别方法,属于深度学习和图像识别领域。该方法包括:搭建卷积神经网络模型对农作物病虫害进行识别,并采用多阶段训练的方法进行训练提高模型的鲁棒性和对不均衡数据的识别能力。第一阶段训练采用原始的不均衡的数据进行模型训练,让模型学习到原始的数据分布;第二阶段训练采用CutMix增强后的数据集进行模型训练,提升模型的鲁棒性;第三阶段训练采用平衡采样后分布均衡的数据集进行模型训练,训练时冻结卷积模块的参数更新,只更新全连接层参数,在保留前两阶段获得的特征提取能力的同时提升模型对尾部类别的分类能力。本发明能提高自然场景下复杂的不均衡分布的病虫害图像识别准确率。
-
公开(公告)号:CN113076873A
公开(公告)日:2021-07-06
申请号:CN202110356903.3
申请日:2021-04-01
Applicant: 重庆邮电大学
Abstract: 本发明涉及一种基于多阶段训练的农作物病害长尾图像识别方法,属于深度学习和图像识别领域。该方法包括:搭建卷积神经网络模型对农作物病虫害进行识别,并采用多阶段训练的方法进行训练提高模型的鲁棒性和对不均衡数据的识别能力。第一阶段训练采用原始的不均衡的数据进行模型训练,让模型学习到原始的数据分布;第二阶段训练采用CutMix增强后的数据集进行模型训练,提升模型的鲁棒性;第三阶段训练采用平衡采样后分布均衡的数据集进行模型训练,训练时冻结卷积模块的参数更新,只更新全连接层参数,在保留前两阶段获得的特征提取能力的同时提升模型对尾部类别的分类能力。本发明能提高自然场景下复杂的不均衡分布的病虫害图像识别准确率。
-