一种基于二次卷积和残差神经网络的轴承故障诊断方法

    公开(公告)号:CN118603557A

    公开(公告)日:2024-09-06

    申请号:CN202410653804.5

    申请日:2024-05-24

    Abstract: 本发明请求保护一种基于二次卷积和残差神经网络的轴承故障诊断方法,该方法首先采用六层二次卷积神经网络,然后,融入了五层创新设计的ResNet残差神经网络,旨在有效克服二次卷积神经网络在训练过程中可能出现的梯度消失或梯度爆炸难题;最后,通过两层全连接层的深层次转化处理,以及顶层Softmax激活函数的应用,系统得以精准量化各类故障模式的概率分布,最终得出可靠的轴承故障诊断结果。与传统的统计学习过程相比,本发明不需要复杂的过程,也不需要对轴承信息进行特殊的预处理。此外,特征提取的过程也更加便利。在不同噪声强度和不同负载功率的数据中,本发明的模型均能取得较高的分类准确率。

Patent Agency Ranking