-
公开(公告)号:CN114360041A
公开(公告)日:2022-04-15
申请号:CN202210013760.0
申请日:2022-01-06
Applicant: 重庆邮电大学
Abstract: 本发明公开了基于关键点检测和头部姿态的疲劳状态检测方法及系统,构建并训练主干网络采用深度可分离卷积网络的MMC多任务预测模型,获取单位时间内的若干帧人脸图像,采用MTCNN网络检测每张图像的人脸位置并裁剪出头部图像;将头部图像输入训练好的MMC多任务预测模型中,得到头部姿态角度和人脸关键点的位置信息;利用双阈值法分别判定头部、眼部和嘴部疲劳状态;设定相关系数综合判定人的疲劳状态,结合人脸关键点检测和头部姿态的相关性,采用主干网络为深度可分离卷积网络的MMC多任务预测模型,将两个任务放在同一个网络中同时进行,可以大幅度的减少需要的参数量和运算量,从而提高了模型的检测速度,进而达到实时的效果。
-
公开(公告)号:CN114360041B
公开(公告)日:2025-04-15
申请号:CN202210013760.0
申请日:2022-01-06
Applicant: 重庆邮电大学
Abstract: 本发明公开了基于关键点检测和头部姿态的疲劳状态检测方法及系统,构建并训练主干网络采用深度可分离卷积网络的MMC多任务预测模型,获取单位时间内的若干帧人脸图像,采用MTCNN网络检测每张图像的人脸位置并裁剪出头部图像;将头部图像输入训练好的MMC多任务预测模型中,得到头部姿态角度和人脸关键点的位置信息;利用双阈值法分别判定头部、眼部和嘴部疲劳状态;设定相关系数综合判定人的疲劳状态,结合人脸关键点检测和头部姿态的相关性,采用主干网络为深度可分离卷积网络的MMC多任务预测模型,将两个任务放在同一个网络中同时进行,可以大幅度的减少需要的参数量和运算量,从而提高了模型的检测速度,进而达到实时的效果。
-