-
公开(公告)号:CN107909497A
公开(公告)日:2018-04-13
申请号:CN201710963914.1
申请日:2017-10-17
Applicant: 重庆邮电大学
CPC classification number: G06Q50/01 , G06K9/6218
Abstract: 本发明请求保护一种基于密度峰值的多粒度社区发现方法,本方法首先对密度峰值聚类算法存在聚类中心难以确定以及归类易出错的缺点进行改进,使其能准确的发现聚类中心。其次,根据密度峰值聚类的中间结果构造全局社区拓扑结构图,在初始的全局社区图上根据定义的粒层分解规则进行粒层由粗到细自动地划分,通过分解机制划分初始全局社区拓扑结构,得到细粒度层次上的多个独立的社区结构,使得问题求解空间由繁到简。最后,在最终形成的最优粒层空间下得到社交网络社区结构的最优划分。本方法从一定程度上揭示了社交网络内部的层次关系,能快速准确地发现网络中具有的稳定层次结构。