基于图卷积网络的环境数据的格点处理方法

    公开(公告)号:CN114647819B

    公开(公告)日:2025-02-25

    申请号:CN202210325115.2

    申请日:2022-03-30

    Abstract: 本发明涉及数据处理领域,涉及一种基于图卷积网络的环境数据的格点处理方法;所述方法包括获取目标区域内的空气质量监测数据和气象监测数据;对所有监测数据进行缺失处理,并将站点的监测数据映射到目标区域所划分的格点矩阵内;使用风向数据和风速数据生成动态风场图,并使用迪杰斯特拉算法计算出风场邻接矩阵;根据空气质量浓度数据构建出每个时刻的掩码矩阵,根据风场邻接矩阵、掩码矩阵和气象监测数据构建出每个时刻的特征向量集合Z;根据掩码矩阵和空气质量浓度数据生成每个时刻的目标矩阵Y;将特征向量集合Z矩阵输入到训练完成的图卷积神经网络模型,得到目标矩阵的估计矩阵P。本发明能提高环境数据格点化的精度。

    基于图卷积网络的环境数据的格点处理方法

    公开(公告)号:CN114647819A

    公开(公告)日:2022-06-21

    申请号:CN202210325115.2

    申请日:2022-03-30

    Abstract: 本发明涉及数据处理领域,涉及一种基于图卷积网络的环境数据的格点处理方法;所述方法包括获取目标区域内的空气质量监测数据和气象监测数据;对所有监测数据进行缺失处理,并将站点的监测数据映射到目标区域所划分的格点矩阵内;使用风向数据和风速数据生成动态风场图,并使用迪杰斯特拉算法计算出风场邻接矩阵;根据空气质量浓度数据构建出每个时刻的掩码矩阵,根据风场邻接矩阵、掩码矩阵和气象监测数据构建出每个时刻的特征向量集合Z;根据掩码矩阵和空气质量浓度数据生成每个时刻的目标矩阵Y;将特征向量集合Z矩阵输入到训练完成的图卷积神经网络模型,得到目标矩阵的估计矩阵P。本发明能提高环境数据格点化的精度。

Patent Agency Ranking