-
公开(公告)号:CN107067283B
公开(公告)日:2021-05-18
申请号:CN201710267098.0
申请日:2017-04-21
Applicant: 重庆邮电大学
IPC: G06Q30/02
Abstract: 本发明请求保护一种基于历史商家记录及用户行为的电商消费客流量预测方法,涉及计算机信息获取和机器学习技术。本发明通过读取商家的历史电商消费记录及用户的浏览消费记录,并进行数据预处理操作。然后对数据集进行提取添加新特征,通过建立一种时间序列的回归模型,最后进行预测未来每天通过电商消费客流量。本发明利用商家电商记录特性,对未来每天使用电商消费客流量进行预测,商家可以优化运营,降低成本,并改善用户体验。
-
公开(公告)号:CN109918529A
公开(公告)日:2019-06-21
申请号:CN201910137102.0
申请日:2019-02-25
Applicant: 重庆邮电大学
IPC: G06F16/583 , G06F16/56 , G06F16/51 , G06K9/62
Abstract: 本发明请求保护一种基于树形聚类矢量量化的图像检索方法,包括步骤:S1对图片进行预处理并提取出图片的矢量特征;S2对图像的矢量进行聚类;S3使用递归聚类对数据空间进行划分;S4根据制定的规则使聚类停止;S5保存图片的路径指纹以及树模型。本发明基于树形聚类的矢量量化算法,并利用深度学习模型的特征抽取能力提取出图片的高维特征向量,充分表达了图像的内容与语义,结合了树形聚类算法的查找能力,提升了图像检索的准确度以及检索速度。
-
公开(公告)号:CN111079935A
公开(公告)日:2020-04-28
申请号:CN201910983158.8
申请日:2019-10-16
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种spark下的机器学习快速大规模样本签名方法,涉及数据挖掘技术和计算机信息处理技术。本方法为:1)读入样本数据,将样本数据转换成独有的样本格式;2)对样本数据中的高频特征进行划分,得到FeatureMap;3)设置最大广播数量,根据最大广播数量计算FeatureMap的partition;4)根据partition数量进行循环迭代,分片广播大量特征;5)最后对样本进行格式转换,得到libsvm格式的数据。本发明可以解决模型训练过程中样本签名性能瓶颈的问题,特别适用于在spark集群下训练模型。本发明虽然解决的是样本签名问题,但是由于本方法定制数据结构和分片广播可以很好的避免shuffle从而同样适用于大数据工程中的数据倾斜问题。
-
公开(公告)号:CN107067283A
公开(公告)日:2017-08-18
申请号:CN201710267098.0
申请日:2017-04-21
Applicant: 重庆邮电大学
IPC: G06Q30/02
CPC classification number: G06Q30/0202
Abstract: 本发明请求保护一种基于历史商家记录及用户行为的电商消费客流量预测方法,涉及计算机信息获取和机器学习技术。本发明通过读取商家的历史电商消费记录及用户的浏览消费记录,并进行数据预处理操作。然后对数据集进行提取添加新特征,通过建立一种时间序列的回归模型,最后进行预测未来每天通过电商消费客流量。本发明利用商家电商记录特性,对未来每天使用电商消费客流量进行预测,商家可以优化运营,降低成本,并改善用户体验。
-
公开(公告)号:CN111079935B
公开(公告)日:2022-10-18
申请号:CN201910983158.8
申请日:2019-10-16
Applicant: 重庆邮电大学
Abstract: 本发明请求保护一种spark下的机器学习快速大规模样本签名方法,涉及数据挖掘技术和计算机信息处理技术。本方法为:1)读入样本数据,将样本数据转换成独有的样本格式;2)对样本数据中的高频特征进行划分,得到FeatureMap;3)设置最大广播数量,根据最大广播数量计算FeatureMap的partition;4)根据partition数量进行循环迭代,分片广播大量特征;5)最后对样本进行格式转换,得到libsvm格式的数据。本发明可以解决模型训练过程中样本签名性能瓶颈的问题,特别适用于在spark集群下训练模型。本发明虽然解决的是样本签名问题,但是由于本方法定制数据结构和分片广播可以很好的避免shuffle从而同样适用于大数据工程中的数据倾斜问题。
-
-
-
-