一种高效的并行不确定性数据聚类方法

    公开(公告)号:CN110059142A

    公开(公告)日:2019-07-26

    申请号:CN201910334513.9

    申请日:2019-04-24

    Abstract: 本发明是一种高效的并行不确定性数据聚类方法。包括,利用区间数结合不确定性数据的统计信息来对不确定性数据进行描述。距离度量,对区间数间的距离进行进一步分析推导,得到更加适合不确定性数据间距离度量的距离度量方式。将数据的不确定性度量与表示,以及距离度量引入到聚类算法OPTICS中,来构建串行的不确定性数据聚类方法。使用MDD-PRBP方法对数据集进行最小边界点数和均衡的分区划分,保障后续并行计算的负载均衡与聚类方法最终的高效运行。结合Hadoop平台,运用MapReduce模型实现并行计算,构建出一种高效的并行不确定性数据聚类方法。

Patent Agency Ranking