基于Apriori算法的试题库知识点间关联性挖掘方法

    公开(公告)号:CN107943946B

    公开(公告)日:2019-08-30

    申请号:CN201711190418.3

    申请日:2017-11-24

    Abstract: 本发明提供一种基于Apriori算法的试题库知识点间关联性挖掘方法,包括步骤S1:将智能题库系统日志表内的用户学习行为数据整理成关联规则模型所需要的数据结构,并导入关联规则模型;其中,用户做的全部知识点被记为一个事务,一道试题对应一个知识点,一个知识点称为一个项;步骤S2:在关联规则模型内寻找用户学习行为数据中最大的频繁项集Lk;步骤S3:根据最大频繁项集Lk产生关联规则;步骤S4:将导出的知识点间的关联规则按照从低年级至高年级的顺序进行排列。本发明通过Apriori算法找出用户知识点间的频繁项集,产生关联规则,运用这种关联规则对用户进行智能推荐,使用户对其薄弱的知识点达到逐步掌握的目的。

    基于Apriori算法的试题库知识点间关联性挖掘方法

    公开(公告)号:CN107943946A

    公开(公告)日:2018-04-20

    申请号:CN201711190418.3

    申请日:2017-11-24

    Abstract: 本发明提供一种基于Apriori算法的试题库知识点间关联性挖掘方法,包括步骤S1:将智能题库系统日志表内的用户学习行为数据整理成关联规则模型所需要的数据结构,并导入关联规则模型;其中,用户做的全部知识点被记为一个事务,一道试题对应一个知识点,一个知识点称为一个项;步骤S2:在关联规则模型内寻找用户学习行为数据中最大的频繁项集Lk;步骤S3:根据最大频繁项集Lk产生关联规则;步骤S4:将导出的知识点间的关联规则按照从低年级至高年级的顺序进行排列。本发明通过Apriori算法找出用户知识点间的频繁项集,产生关联规则,运用这种关联规则对用户进行智能推荐,使用户对其薄弱的知识点达到逐步掌握的目的。

Patent Agency Ranking