一种车载噪音识别方法
    1.
    发明公开

    公开(公告)号:CN112687294A

    公开(公告)日:2021-04-20

    申请号:CN202011521089.8

    申请日:2020-12-21

    Abstract: 本发明提供一种车载噪音识别方法,包括以下步骤:步骤1:首先对输入车载噪音信号进行预加重、分帧加窗等预处理操作;步骤2:利用布谷鸟搜索(CS)算法的全局寻优能力去找到深度信念网络(DBN)的最优初始权值、学习率以及隐层神经元数目,获得最优的深度信念网络结构;步骤3:在激活函数的选择上,采用ReLU激活函数替换常用的sigmod函数,有效解决梯度消失问题;步骤4:采用改进后的深度信念网络模型实现输入车载噪音信号的自动特征提取;步骤5:将深度信念网络模型提取到的高层噪音特征作为基于卡方距离改进的高斯加权KNN算法(GCKNN)中的输入,实现最后的噪音识别。本发明结合了DBN自动提取特征的能力和GCKNN的快速学习能力,得到最佳的噪音识别效果。

Patent Agency Ranking