一种使用寿命长的超级电容的制备方法

    公开(公告)号:CN114420462A

    公开(公告)日:2022-04-29

    申请号:CN202111617691.6

    申请日:2021-12-27

    Abstract: 一种使用寿命长的超级电容的制备方法是以用韧性材料包裹后的MnO2@Ni(OH)2/NF为阳极、活性碳板为阴极、7mol/L的KOH溶液为电解液、聚丙烯为隔离板,经过超级电容组装步骤制得。本发明超级电容在1A时电极的比电容达到105F/g,最大能量密度高达47.3Wh/Kg,而MnO2@Ni(OH)2/NF电极经过韧性材料处理,可使得MnO2@Ni(OH)2/NF电极适应充放电过程由于体积变化,同时还可以防止电解液的腐蚀作用,最终使得产品循环稳定性好,在3A/g电流下充放电10000圈后,比电容保持率为初始的99.8%,电化学储能优异,值得市场推广。

    一种MnO2@Ni(OH)2/NF电容电极的制备方法

    公开(公告)号:CN114429869A

    公开(公告)日:2022-05-03

    申请号:CN202111613642.5

    申请日:2021-12-27

    Abstract: 一种MnO2@Ni(OH)2/NF电容电极的制备方法包括MnO2@Ni(OH)2/NF的制备,MnO2@Ni(OH)2/NF碳量子点负载,负载碳量子点的MnO2@Ni(OH)2/NF韧性材料包裹等步骤制得;其中,所述韧性材料是由羧甲基纤维素钠、羧基丁腈橡胶、铝粉、4‑甲基咪唑、去离子水制得。本发明可使得MnO2@Ni(OH)2/NF具有更高的比电容值,在1A/g时比电容可高达1569F/g,而负载碳量子点的MnO2@Ni(OH)2/NF电极经过韧性材料处理,可使得MnO2@Ni(OH)2/NF电极适应充放电过程由于体积变化,同时还可以防止电解液的腐蚀作用,最终使得产品循环稳定性好,即使在10A/g的高电流密度下充放电10000圈,比电容无衰减,保持率为初始值的99.1%,电化学储能优异,值得市场推广。

    一种用于汽车尾气传感器的氧化锆陶瓷材料的制备方法

    公开(公告)号:CN116003125A

    公开(公告)日:2023-04-25

    申请号:CN202211553803.0

    申请日:2022-12-06

    Abstract: 一种用于汽车尾气传感器的氧化锆陶瓷材料的制备方法,是在氧化钇稳定氧化锆粉中加入蒙脱石壳聚糖复合物,球磨后进行分段煅烧,所述分段煅烧分为三段依次递增的温度进行煅烧,其中第一段温度是400‑450℃、煅烧时间为50‑70min,第二段温度是550‑650℃、煅烧时间为30‑60min,第三段温度是850‑900℃,煅烧时间为5‑7h。本发明通过采用蒙脱石壳聚糖复合物添加制备氧化锆陶瓷材料,提高了氧化锆陶瓷材料的电导率,且在高温变化下的电导率稳定性优异,有效适应了温度变化,在循环使用20000次后,其电导率保持在起始电导率0.033S/cm的93.75%,具有优异的循环稳定性,可以保证在高温环境下长时间稳定工作。

    一种NiO@CoMoO4/NF电容电极的制备方法

    公开(公告)号:CN113421775B

    公开(公告)日:2022-05-13

    申请号:CN202110693285.1

    申请日:2021-06-22

    Abstract: 一种NiO@CoMoO4/NF电容电极的制备方法是以NF、COCl2.6H2O、Na2MOO4.2H2O、葡萄糖、韧性材料为原材料,分别经过NiO@CoMoO4/NF的制备,NiO@CoMoO4/NF碳量子点负载,负载碳量子点的NiO@CoMoO4/NF韧性材料包裹等步骤制得。本发明NiO@CoMoO4/NF具有更高的比电容值,同时也可大幅提高电极导电性能,另一方面NiO@CoMoO4/NF电极经过韧性材料处理,可使得NiO@CoMoO4/NF电极适应充放电过程由于体积变化,同时还可以防止电解液的腐蚀作用,最终使得产品循环稳定性好,充放电循环10000次后,本发明容量没有衰减,仍然保持最大容量的100%,质量比电容具有大幅度增加,在1 A/g时电极的质量比电容可高达1457F/g,电化学储能优异,值得市场推广。

    一种多孔TiO2/PEDOT电极的制备方法及超级电容器

    公开(公告)号:CN113192765A

    公开(公告)日:2021-07-30

    申请号:CN202110479706.0

    申请日:2021-04-30

    Abstract: 本发明涉及电极材料技术领域,具体涉及一种多孔TiO2/PEDOT电极的制备方法及超级电容器,其中方法包括:旋涂聚苯乙烯微球水溶液,获得薄膜;采用喷涂法将1~2ml溶液1喷涂到薄膜A,获得薄膜B;将薄膜B放置在抽风橱内进行加热;撤除掩膜板,获得聚苯乙烯微球/四氯化钛电极;将聚苯乙烯微球/四氯化钛电极放置在二氯甲烷溶液中,去除PE基底,获得多孔均匀致密的四氯化钛电极;将四氯化钛电极放置在200℃的高温空气中进行反应,获得TiO2电极;将TiO2电极放置到石英玻璃上喷涂0.5~1ml聚苯乙烯磺酸铁,获得TiO2/聚苯乙烯磺酸铁电极;去除掩膜板,加入3,4乙烯二氧噻吩单体,得到TiO2/PEDOT电极。本发明解决了现有技术反应复杂同时不易控制的技术问题。

    紧致有序自支撑MOFs电极的制备方法及微型超级电容器

    公开(公告)号:CN113178342A

    公开(公告)日:2021-07-27

    申请号:CN202110479700.3

    申请日:2021-04-30

    Abstract: 本发明涉及电极制备技术领域,具体涉及一种紧致有序自支撑MOFs电极的制备方法及微型超级电容器,其中方法包括:在柔性PE膜上压紧聚四氟乙烯掩膜板,获得薄膜A;采用喷涂法将1~2ml溶液A喷涂到薄膜A,获得薄膜B;采用喷涂法将1~2ml溶液B喷涂到薄膜B,获得薄膜C;将薄膜C放置在抽风橱内进行加热;将薄膜C放置在真空中在60℃的温度下保持24h,获得叉指电极A;用去离子水以及乙醇浸泡叉指电极A,清洗2~3次,并去除乙醇;将叉指电极A放置在二氯甲烷溶液中,溶解聚苯乙烯微球与PE膜,获得自支撑MOFs电极。本发明不会增大电极的电阻,也不会对电子的传递造成阻碍,提高了MOFs电极的性能,解决了现有技术制备的MOFs电极性能低、制备方法复杂的技术问题。

    一种超级电容器隔膜
    8.
    发明公开

    公开(公告)号:CN109461595A

    公开(公告)日:2019-03-12

    申请号:CN201811147048.X

    申请日:2018-09-29

    Abstract: 本发明涉及一种超级电容器隔膜,包括隔膜基层,所述隔膜基层的两侧分别设置有第一、第二散热层,所述第一、第二散热层是分别涂覆后固结在隔膜基层上。上述的第一、第二散热层能够有效实现对电容器内产生的热量均匀分布和散发,从而提高超级电容器的使用寿命。更好的方法是由二氧化硅溶胶、氧化石墨烯分散液和聚苯乙烯乳液,二氧化硅溶胶与氧化石墨烯分散液等体积制成溶液涂覆并固结在隔膜基层上。这样的涂层是超亲水-超疏水混合表面,相对于普通单一疏水表面或者亲水表面,具有更好的池沸腾传热性能。

Patent Agency Ranking