一种基于多源数据的高速公路异常事件排队长度预测方法

    公开(公告)号:CN111882858A

    公开(公告)日:2020-11-03

    申请号:CN202010484814.2

    申请日:2020-06-01

    Abstract: 本发明公开了一种基于多源数据的高速公路异常事件排队长度预测方法,本发明在考虑道路检测设备分布稀疏的情况下,基于车检器数据和收费数据,采用模态划分的方法在一定程度上解决排队长度预测所需数据获取困难的问题,可适用于发生于一定场景下的异常事件排队长度预测;本发明的方法是通过结合历史车检器数据和收费数据得到两个部分的车流量参数,通过历史收费数据结合收费站之间的OD特性得到两两收费站间的平均行程速度,结合建立的目标场景下的排队长度预测模型达到对排队长度进行预测的目的,该方法依据多源数据能够较为准确的预测排队长度的变化趋势,为道路交通系统的交通管制以及交通拥堵问题的缓解提供强有力的技术支持。

    一种基于多源数据的高速公路异常事件排队长度预测方法

    公开(公告)号:CN111882858B

    公开(公告)日:2022-05-20

    申请号:CN202010484814.2

    申请日:2020-06-01

    Abstract: 本发明公开了一种基于多源数据的高速公路异常事件排队长度预测方法,本发明在考虑道路检测设备分布稀疏的情况下,基于车检器数据和收费数据,采用模态划分的方法在一定程度上解决排队长度预测所需数据获取困难的问题,可适用于发生于一定场景下的异常事件排队长度预测;本发明的方法是通过结合历史车检器数据和收费数据得到两个部分的车流量参数,通过历史收费数据结合收费站之间的OD特性得到两两收费站间的平均行程速度,结合建立的目标场景下的排队长度预测模型达到对排队长度进行预测的目的,该方法依据多源数据能够较为准确的预测排队长度的变化趋势,为道路交通系统的交通管制以及交通拥堵问题的缓解提供强有力的技术支持。

    一种考虑大型车的高速公路异常事件排队长度预测方法

    公开(公告)号:CN114783193B

    公开(公告)日:2024-10-18

    申请号:CN202210319641.8

    申请日:2022-03-29

    Abstract: 本发明提供了一种考虑大型车的高速公路异常事件排队长度预测方法,属于交通数据分析及处理领域。本发明包括以下步骤:首先,在高速公路观测路段出现异常事件并有大型车混入的情况下,根据不同驾驶员对大型车的不同敏感程度以及大型车的混入率,改进观测路段动态空间占有率;然后,引入交通密度概念及Greenshields线性关系模型,分析观测路段的交通参数;然后,引入交通波波速,分析观测路段的交通波传播过程,构建交通波模型;最后,预测有大型车混入的高速公路出现异常事件的影响时间及影响范围。本发明能够准确的预测有大型车混入且发生异常事件情况下的排队长度变化趋势和交通演化趋势,为交通管制人员进行交通诱导提供参考依据,提高高速公路服务水平。

    一种考虑大型车的高速公路异常事件排队长度预测方法

    公开(公告)号:CN114783193A

    公开(公告)日:2022-07-22

    申请号:CN202210319641.8

    申请日:2022-03-29

    Abstract: 本发明提供了一种考虑大型车的高速公路异常事件排队长度预测方法,属于交通数据分析及处理领域。本发明包括以下步骤:首先,在高速公路观测路段出现异常事件并有大型车混入的情况下,根据不同驾驶员对大型车的不同敏感程度以及大型车的混入率,改进观测路段动态空间占有率;然后,引入交通密度概念及Greenshields线性关系模型,分析观测路段的交通参数;然后,引入交通波波速,分析观测路段的交通波传播过程,构建交通波模型;最后,预测有大型车混入的高速公路出现异常事件的影响时间及影响范围。本发明能够准确的预测有大型车混入且发生异常事件情况下的排队长度变化趋势和交通演化趋势,为交通管制人员进行交通诱导提供参考依据,提高高速公路服务水平。

    一种融合多种特征的高速公路隧道停车事件分级识别方法

    公开(公告)号:CN107066929B

    公开(公告)日:2021-06-08

    申请号:CN201710010428.8

    申请日:2017-01-06

    Abstract: 本发明公开了一种融合多种特征的高速公路隧道停车事件分级识别方法,通过研究隧道场景下停车目标的静态动态特点,分析实际停车目标和伪停车目标的特征差异,设计了一种融合多特征的高速公路隧道场景下的停车目标分级识别方法。该方法首先结合修正后的各车道感兴趣区域,利用分车道方法以及多帧前景融合方式提取前景的周期性特征并分析、处理,进而以动态质心特征为首、静态颜色、面积特征为辅逐级判断是否有停车事件发生,实现对停车目标的有效识别,提高现有高速公路隧道停车事件检测的准确率。

    一种基于MPC的高速公路异常事件下的上游动态分流方法

    公开(公告)号:CN117831285A

    公开(公告)日:2024-04-05

    申请号:CN202311854469.7

    申请日:2023-12-29

    Abstract: 本发明提出了一种基于MPC的高速公路异常事件下的上游动态分流方法,通过ETC数据、车辆轨迹数据和路段属性,使模型能够更好地理解和捕获预测路段的交通状况。本发明针对高速公路异常事件下的交通诱导分流研究较少,已有研究没有考虑上游多路段流量对异常事故路段的协同影响,无法形成上游多路段协调动态分流控制方案,提出建立高速METANET宏观交通流模型,设计MPC控制上游分流量方案,对交通状态的实时监测与预测,同时作为输入反馈回MPC控制器,形成动态的上游分流方案,并能在必要时动态调整分流量,保障整体交通系统的高效运行。本发明可以为交通管理人员组织应急交通提供支撑,提高高速公路通行能力和服务水平。

Patent Agency Ranking