核壳结构铝热剂及其制备方法

    公开(公告)号:CN109369312B

    公开(公告)日:2020-09-15

    申请号:CN201811380044.6

    申请日:2018-11-20

    Applicant: 重庆大学

    Abstract: 核壳结构铝热剂及其制备方法,该方法包括:将聚4‑乙烯基吡啶(P4VP)溶于异丙醇中形成混合液,然后将纳米硅粉置于混合液中并超声处理,之后离心分离,随后使用异丙醇洗涤去除未发生包覆的P4VP,干燥后得到包覆有P4VP的硅粉;将上述所得硅粉置于异丙醇中,加入化学计量比的金属氧化物微粉,超声处理形成浆料;以及将所得浆料真空干燥后研磨粉碎,得到以纳米硅粉为核,金属氧化物为壳层的Si@MOx纳米级核壳结构铝热剂。本发明的核壳结构不仅缩短了硅粉与金属氧化物之间的传质距离,降低了反应的活化能,且提高了复合铝热剂对外做功的能力。本发明提供的制备方法简单易行,制备的核壳结构铝热剂具有燃烧性能好、放热量高、壳层厚度精确可调等性能特点。

    纳米Mg/Fe2O3含能薄膜的低压制备方法

    公开(公告)号:CN109576765A

    公开(公告)日:2019-04-05

    申请号:CN201910029971.1

    申请日:2019-01-10

    Applicant: 重庆大学

    Abstract: 纳米Mg/Fe2O3含能薄膜的低压制备方法,包括:利用氯化铁、盐酸、聚乙二醇(PEG)、水和乙醇以及氢氧化钠制备纳米Fe2O3;将所得纳米Fe2O3粉末和Mg粉加入水中形成分散液;再利用乙烯基三(β-甲氧乙氧基)硅烷和十六烷基三甲基季铵溴化铵将上述分散液形成稳定悬浮液;最后利用低压电泳法在阴极片材基底上形成纳米Mg/Fe2O3含能薄膜。本发明制备成本低廉、高效,不仅突破了纳米Mg粉和Fe2O3同向高效沉积的困境,同时极大的降低了电压,因此制备安全性大幅提高。并且,本发明制备得到的超级含能材料附着力强,稳定性佳,在国防军工,MEMS,爆破等领域具有广泛的应用前景。

    核壳结构铝热剂及其制备方法

    公开(公告)号:CN109369312A

    公开(公告)日:2019-02-22

    申请号:CN201811380044.6

    申请日:2018-11-20

    Applicant: 重庆大学

    CPC classification number: C06B33/00

    Abstract: 核壳结构铝热剂及其制备方法,该方法包括:将聚4-乙烯基吡啶(P4VP)溶于异丙醇中形成混合液,然后将纳米硅粉置于混合液中并超声处理,之后离心分离,随后使用异丙醇洗涤去除未发生包覆的P4VP,干燥后得到包覆有P4VP的硅粉;将上述所得硅粉置于异丙醇中,加入化学计量比的金属氧化物微粉,超声处理形成浆料;以及将所得浆料真空干燥后研磨粉碎,得到以纳米硅粉为核,金属氧化物为壳层的Si@MOx纳米级核壳结构铝热剂。本发明的核壳结构不仅缩短了硅粉与金属氧化物之间的传质距离,降低了反应的活化能,且提高了复合铝热剂对外做功的能力。本发明提供的制备方法简单易行,制备的核壳结构铝热剂具有燃烧性能好、放热量高、壳层厚度精确可调等性能特点。

    具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂

    公开(公告)号:CN109295418B

    公开(公告)日:2020-09-25

    申请号:CN201811176444.5

    申请日:2018-10-10

    Applicant: 重庆大学

    Abstract: 具有极高负载量的高放热量Al/CuO 3D核壳阵列结构铝热剂。该铝热剂的制备方法包括:将制备好的泡沫铜片放入化学清洗液中清洗后得到除去有机物层和氧化层的、外观呈黄铜色的泡沫铜;然后将得到的泡沫铜迅速放在一定浓度的氢氧化钾溶液中阳极氧化获得氢氧化铜阵列。冲洗烘干后,在管式炉内程序升温得到氧化铜三维阵列结构;最后通过磁控溅射沉积方式在氧化铜三维阵列表面沉积Al以形成Al/CuO纳米3D核壳阵列结构铝热剂。与普通Al/CuO铝热剂相比,本发明的铝热剂具有氧化剂/燃料复合均匀、阵列负载密度更高、无裂纹、附着力强、放热性能优良等优点。

    纳米Mg/Fe2O3含能薄膜的低压制备方法

    公开(公告)号:CN109576765B

    公开(公告)日:2020-11-06

    申请号:CN201910029971.1

    申请日:2019-01-10

    Applicant: 重庆大学

    Abstract: 纳米Mg/Fe2O3含能薄膜的低压制备方法,包括:利用氯化铁、盐酸、聚乙二醇(PEG)、水和乙醇以及氢氧化钠制备纳米Fe2O3;将所得纳米Fe2O3粉末和Mg粉加入水中形成分散液;再利用乙烯基三(β‑甲氧乙氧基)硅烷和十六烷基三甲基季铵溴化铵将上述分散液形成稳定悬浮液;最后利用低压电泳法在阴极片材基底上形成纳米Mg/Fe2O3含能薄膜。本发明制备成本低廉、高效,不仅突破了纳米Mg粉和Fe2O3同向高效沉积的困境,同时极大的降低了电压,因此制备安全性大幅提高。并且,本发明制备得到的超级含能材料附着力强,稳定性佳,在国防军工,MEMS,爆破等领域具有广泛的应用前景。

Patent Agency Ranking