-
公开(公告)号:CN101957912B
公开(公告)日:2012-08-01
申请号:CN201010515041.6
申请日:2010-10-21
Applicant: 重庆大学
IPC: G06K9/00
Abstract: 本发明是一种基于多尺度各向异性扩散算法的人脸光照不变特征图像的获取方法。属于图像处理技术领域。本发明基于朗伯凸表面模型将人脸图像分解为小尺度特征图像和大尺度特征图像。其中小尺度特征图像可视为一种较为理想的人脸光照不变特征图像。核心是通过引入新的区间不一致描述子,增强各向异性扩散算法对低频域图像的边缘保持能力,从而大大削弱算法的图像光晕效应;同时提出一种新的传递系数,降低由边缘锐化带来的噪声;引入一种各向异性扩散约束,使方法更加适合于处理人脸图像中的光照问题。实验表明即使在极其恶劣的光照条件下本发明也能获得很好的处理效果,并可有效地提高人脸识别或人脸认证对光照条件变化的鲁棒性。
-
公开(公告)号:CN101968850A
公开(公告)日:2011-02-09
申请号:CN201010515032.7
申请日:2010-10-21
Applicant: 重庆大学
Abstract: 本发明是一种模拟生物视觉机制的人脸特征提取方法,属于图像处理、模式识别领域。本发明步骤为:模拟初级视皮层简单细胞的学习机制,训练一组描述简单细胞感受野的滤波器,从该组滤波器中选出少量具有特定频率选择性的滤波器提取图像的光照不变特征;模拟初级视皮层复杂细胞的功能,在光照不变性的基础上增加特征的表情和平移不变性;通过视觉注意机制对不变特征的显著区域进行增强;将增强的不变特征转换为特征向量,用于人脸识别。实验表明,本方法能有效减小光照、表情和平移变化对人脸识别效果的影响,且具有实时处理能力。
-
公开(公告)号:CN101957912A
公开(公告)日:2011-01-26
申请号:CN201010515041.6
申请日:2010-10-21
Applicant: 重庆大学
IPC: G06K9/00
Abstract: 本发明是一种基于多尺度各向异性扩散算法的人脸光照不变特征图像的获取方法。属于图像处理技术领域。本发明基于朗伯凸表面模型将人脸图像分解为小尺度特征图像和大尺度特征图像。其中小尺度特征图像可视为一种较为理想的人脸光照不变特征图像。核心是通过引入新的区间不一致描述子,增强各向异性扩散算法对低频域图像的边缘保持能力,从而大大削弱算法的图像光晕效应;同时提出一种新的传递系数,降低由边缘锐化带来的噪声;引入一种各向异性扩散约束,使方法更加适合于处理人脸图像中的光照问题。实验表明即使在极其恶劣的光照条件下本发明也能获得很好的处理效果,并可有效地提高人脸识别或人脸认证对光照条件变化的鲁棒性。
-
公开(公告)号:CN101964055A
公开(公告)日:2011-02-02
申请号:CN201010515043.5
申请日:2010-10-21
Applicant: 重庆大学
Abstract: 本发明公开了一种模仿视觉感知机制的自然场景类型辨识方法,属于计算机视觉技术领域。该方法旨在利用自然场景图像中的固有统计性视觉特征来进行自然场景图像类型辨识,其技术方案包括以下步骤:1、对给定的自然场景图像样本集进行预处理;2、用模仿视觉感知机制的方法提取自然场景图像样本集的特征;3、用自然场景图像样本集的特征训练出一个自然场景类型辨识器模型;4、对一幅待辨识的自然场景图像,进行预处理和用模仿视觉感知机制的方法提取其特征;5、利用自然场景类型辨识器模型对待辨识的自然场景图像进行场景类型辨识。本发明能够实现对多种自然场景类型的辨识,有效提高对自然场景图像进行场景类型辨识的正确率。
-
公开(公告)号:CN101968850B
公开(公告)日:2012-12-12
申请号:CN201010515032.7
申请日:2010-10-21
Applicant: 重庆大学
Abstract: 本发明是一种模拟生物视觉机制的人脸特征提取方法,属于图像处理、模式识别领域。本发明步骤为:模拟初级视皮层简单细胞的学习机制,训练一组描述简单细胞感受野的滤波器,从该组滤波器中选出少量具有特定频率选择性的滤波器提取图像的光照不变特征;模拟初级视皮层复杂细胞的功能,在光照不变性的基础上增加特征的表情和平移不变性;通过视觉注意机制对不变特征的显著区域进行增强;将增强的不变特征转换为特征向量,用于人脸识别。实验表明,本方法能有效减小光照、表情和平移变化对人脸识别效果的影响,且具有实时处理能力。
-
公开(公告)号:CN101964055B
公开(公告)日:2012-09-26
申请号:CN201010515043.5
申请日:2010-10-21
Applicant: 重庆大学
Abstract: 本发明公开了一种模仿视觉感知机制的自然场景类型辨识方法,属于计算机视觉技术领域。该方法旨在利用自然场景图像中的固有统计性视觉特征来进行自然场景图像类型辨识,其技术方案包括以下步骤:1、对给定的自然场景图像样本集进行预处理;2、用模仿视觉感知机制的方法提取自然场景图像样本集的特征;3、用自然场景图像样本集的特征训练出一个自然场景类型辨识器模型;4、对一幅待辨识的自然场景图像,进行预处理和用模仿视觉感知机制的方法提取其特征;5、利用自然场景类型辨识器模型对待辨识的自然场景图像进行场景类型辨识。本发明能够实现对多种自然场景类型的辨识,有效提高对自然场景图像进行场景类型辨识的正确率。
-
-
-
-
-