-
公开(公告)号:CN106228979A
公开(公告)日:2016-12-14
申请号:CN201610674982.1
申请日:2016-08-16
申请人: 重庆大学
摘要: 本发明涉及一种公共场所异常声音的提取及识别方法,对极点对称模态分解(ESMD)进行改进,简称D-ESMD,其特点是:在公共场所异常声音中加入随机T分布序列信号,减小公共场所背景噪声对异常声音特征提取的影响;针对原始ESMD在分解异常声音时,分解效果欠佳的问题,提出对称中点插值替代极值中点奇偶插值方法,提高异常声音分解效率与识别率;针对原始ESMD在有效分解模态选择上的缺陷,提出基于排列熵算法对ESMD分解得到的模态进行复杂性检测,自适应得到异常声音有效模态分量。利用本发明可以充分描述异常声音的特征,并得到较好的分类识别结果,更能够准确提取异常声音的特征,并且对环境背景噪声具有较好的鲁棒性。
-
公开(公告)号:CN106228979B
公开(公告)日:2020-01-10
申请号:CN201610674982.1
申请日:2016-08-16
申请人: 重庆大学
摘要: 本发明涉及一种公共场所异常声音的提取及识别方法,对极点对称模态分解(ESMD)进行改进,简称D‑ESMD,其特点是:在公共场所异常声音中加入随机T分布序列信号,减小公共场所背景噪声对异常声音特征提取的影响;针对原始ESMD在分解异常声音时,分解效果欠佳的问题,提出对称中点插值替代极值中点奇偶插值方法,提高异常声音分解效率与识别率;针对原始ESMD在有效分解模态选择上的缺陷,提出基于排列熵算法对ESMD分解得到的模态进行复杂性检测,自适应得到异常声音有效模态分量。利用本发明可以充分描述异常声音的特征,并得到较好的分类识别结果,更能够准确提取异常声音的特征,并且对环境背景噪声具有较好的鲁棒性。
-