-
公开(公告)号:CN114912693A
公开(公告)日:2022-08-16
申请号:CN202210565932.5
申请日:2022-05-23
Applicant: 重庆大学
Abstract: 本发明涉及一种基于多模态预测的自动驾驶汽车运动规划方法,属于自动驾驶汽车技术领域。该方法包括:S1:根据自车的轨迹历史和周围车辆的轨迹历史,采用LSTM模型预测周围车辆未来的多模态行为,即周围车辆在不同模态下未来位置的概率分布;S2:根据步骤S1中LSTM模型预测得到的多模态行为,构造相应的其他车辆的行为分支和自车的轨迹分支,由多模态概率和安全约束确定相应的分支概率;并利用MPC算法以轨迹分支的形式求解反馈策略。本发明在运动规划过程中采用了多模态的预测模型,提高了预测的精度,对传统的MPC进行了优化并通过反馈策略考虑了自车与他车的相互影响及整体的风险最优。
-
公开(公告)号:CN114912693B
公开(公告)日:2025-03-21
申请号:CN202210565932.5
申请日:2022-05-23
Applicant: 重庆大学
IPC: G06Q10/0631 , G06Q50/40 , G06N3/0455 , G06N3/0442 , G06N3/08 , G08G1/01
Abstract: 本发明涉及一种基于多模态预测的自动驾驶汽车运动规划方法,属于自动驾驶汽车技术领域。该方法包括:S1:根据自车的轨迹历史和周围车辆的轨迹历史,采用LSTM模型预测周围车辆未来的多模态行为,即周围车辆在不同模态下未来位置的概率分布;S2:根据步骤S1中LSTM模型预测得到的多模态行为,构造相应的其他车辆的行为分支和自车的轨迹分支,由多模态概率和安全约束确定相应的分支概率;并利用MPC算法以轨迹分支的形式求解反馈策略。本发明在运动规划过程中采用了多模态的预测模型,提高了预测的精度,对传统的MPC进行了优化并通过反馈策略考虑了自车与他车的相互影响及整体的风险最优。
-
公开(公告)号:CN114580302A
公开(公告)日:2022-06-03
申请号:CN202210261432.2
申请日:2022-03-16
Applicant: 重庆大学
Abstract: 本发明涉及一种基于最大熵强化学习的自动驾驶汽车决策规划方法,属于自动驾驶汽车领域。该方法包括:S1:构建基于最大熵强化学习的决策规划模型,该模型包括:状态空间、动作空间、奖励函数、策略函数与评价模型;S2:构建具有交互性的高速公路仿真训练场景:使用二自由度汽车运动学模型描述训练场景中车辆的运动,并利用基于规则的智能决策规划模型控制环境车辆,使环境具有交互特性;S3:训练基于最大熵强化学习的决策规划模型。本发明利用最大熵强化学习提高了自动驾驶汽车的高速公路决策规划策略的最优性与稳定性。
-
-