-
公开(公告)号:CN113816473A
公开(公告)日:2021-12-21
申请号:CN202111259372.2
申请日:2021-10-28
Applicant: 辽宁大学
IPC: C02F1/469 , B01J13/00 , C02F101/20 , C02F103/16
Abstract: 本发明公开了一种蘑菇棒基导电复合气凝胶结合电增强吸附Re(VII)的方法。以废弃的蘑菇棒为原料制备蘑菇棒基导电复合气凝胶。以制备的蘑菇棒基导电复合气凝胶作为工作电极,在0.8‑1.2V下对Re(VII)进行电增强吸附。在初始浓度为300mg·L‑1时,工作电极的吸附量为708mg·g‑1,吸附量显著高于静态吸附。进一步采用Langmuir吸附等温模型对实验数据进行拟合,得到对Re(VII)的最大电增强吸附容量为942mg·g‑1,是传统吸附容量的3.58倍。在解析‑吸附三个循环后,蘑菇棒基导电复合气凝胶电极对Re(VII)的电吸附能力稳定,说明蘑菇棒基导电复合气凝胶有良好的可再生性能。
-
公开(公告)号:CN113816473B
公开(公告)日:2023-07-28
申请号:CN202111259372.2
申请日:2021-10-28
Applicant: 辽宁大学
IPC: C02F1/469 , B01J13/00 , C02F101/20 , C02F103/16
Abstract: 本发明公开了一种蘑菇棒基导电复合气凝胶结合电增强吸附Re(VII)的方法。以废弃的蘑菇棒为原料制备蘑菇棒基导电复合气凝胶。以制备的蘑菇棒基导电复合气凝胶作为工作电极,在0.8‑1.2V下对Re(VII)进行电增强吸附。在初始浓度为300mg·L‑1时,工作电极的吸附量为708mg·g‑1,吸附量显著高于静态吸附。进一步采用Langmuir吸附等温模型对实验数据进行拟合,得到对Re(VII)的最大电增强吸附容量为942mg·g‑1,是传统吸附容量的3.58倍。在解析‑吸附三个循环后,蘑菇棒基导电复合气凝胶电极对Re(VII)的电吸附能力稳定,说明蘑菇棒基导电复合气凝胶有良好的可再生性能。
-
公开(公告)号:CN111440351B
公开(公告)日:2023-09-15
申请号:CN202010173739.8
申请日:2020-03-13
Applicant: 辽宁大学
IPC: C08J9/28 , C08J3/00 , C08L1/04 , C08L79/02 , B33Y70/00 , C08B15/02 , C08G73/02 , H01G11/24 , H01G11/48
Abstract: 本发明公开了一种可用于超级电容器的3D超分子自组装导电生物质气凝胶及其制备方法和应用。制备方法为:将废弃生物质用混合酸法进行费歇尔酯化反应,得到高纵横比的羧基化纤维素纳米纤维。过硫酸铵溶于樟脑磺酸溶液中,苯胺溶于二氯甲烷溶液中,通过界面聚合反应制备聚苯胺纳米纤维。在水性介质中将纤维素纳米纤维和聚苯胺纳米纤维通过氢键作用进行超分子自组装,通过简单的真空冷冻干燥技术得到导电3D超分子纤维素气凝胶,无须使用化学交联剂。该气凝胶具有分层多孔的3D结构、高孔隙率、低密度以及良好的导电性,可用作超级电容器。本发明工艺简单、合成成本低、无毒环保,为废弃生物质提供了一种高价值的利用途径,具有实际应用性。
-
公开(公告)号:CN111440351A
公开(公告)日:2020-07-24
申请号:CN202010173739.8
申请日:2020-03-13
Applicant: 辽宁大学
IPC: C08J9/28 , C08J3/00 , C08L1/04 , C08L79/02 , B33Y70/00 , C08B15/02 , C08G73/02 , H01G11/24 , H01G11/48
Abstract: 本发明公开了一种可用于超级电容器的3D超分子自组装导电生物质气凝胶及其制备方法和应用。制备方法为:将废弃生物质用混合酸法进行费歇尔酯化反应,得到高纵横比的羧基化纤维素纳米纤维。过硫酸铵溶于樟脑磺酸溶液中,苯胺溶于二氯甲烷溶液中,通过界面聚合反应制备聚苯胺纳米纤维。在水性介质中将纤维素纳米纤维和聚苯胺纳米纤维通过氢键作用进行超分子自组装,通过简单的真空冷冻干燥技术得到导电3D超分子纤维素气凝胶,无须使用化学交联剂。该气凝胶具有分层多孔的3D结构、高孔隙率、低密度以及良好的导电性,可用作超级电容器。本发明工艺简单、合成成本低、无毒环保,为废弃生物质提供了一种高价值的利用途径,具有实际应用性。
-
-
-