基于拓扑-图切融合优化的多谱段红外图像背景抑制方法

    公开(公告)号:CN108665435A

    公开(公告)日:2018-10-16

    申请号:CN201810015843.7

    申请日:2018-01-08

    Abstract: 本发明公开了一种基于拓扑-图切融合优化的多谱段红外图像背景抑制方法,分别对多谱段的红外图像进行局部Patch预处理获得预处理后的图像,根据拓扑微分方法对所述预处理后的图像进行强起伏边缘的抑制获得最优扩散系数,根据获得的最优扩散系数与梯度均值滤波相结合分别对单波段图像进行背景抑制,获得若干个单波段杂波抑制后的目标图像;根据尺度区域能量理论模型对所述获得的若干个单波段杂波抑制后的目标图像进行融合,得到多谱段融合的背景抑制结果图像;对所述多谱段融合的背景抑制结果图像进行图切策略优化,消除融合后图像的局部轮廓效应,最终获得背景抑制后的图像。本发明能有效地抑制红外图像中所包含的高灰度级、起伏剧烈的红外背景,并能够突出目标信息。

    多层深度特征融合的自适应抗遮挡红外目标跟踪方法

    公开(公告)号:CN108665481A

    公开(公告)日:2018-10-16

    申请号:CN201810259132.4

    申请日:2018-03-27

    Abstract: 本发明公开了一种多层深度特征融合的自适应抗遮挡红外目标跟踪方法,首先,获得一系列相同尺寸不同层级的多层深度特征图;然后,根据相关滤波将所述多层深度特征图从时域转换到频域,并且根据快速傅里叶变换进行滤波器训练和响应图计算,再根据层内特征加权融合对多层深度特征图进行合并降维处理,构建出不同层级的特征响应图并且求出最大相关响应值即为目标估计位置;最后,对目标稠密特征进行提取,根据相关滤波获得特征最大响应值,获得通过深度卷积特征所估计的目标中心位置的响应置信度;当所述目标中心位置的响应置信度小于重检测阈值T0时,通过在线目标重检测对获得的目标估计位置进行评估并且根据评估结果对目标的位置进行自适应更新。

    基于可变形卷积网络的流场识别方法

    公开(公告)号:CN111027626B

    公开(公告)日:2023-04-07

    申请号:CN201911263125.2

    申请日:2019-12-11

    Abstract: 本发明公开了一种基于可变形卷积网络的流场识别方法,所述通过已有数据集对预训练网络进行预训练;将预训练网络的全连接层更换成卷积层,通过迁移学习思想,将预训练后获得的权重参数迁移到流场识别模型中;通过所述流场识别模型对图像进行逐像素分类实现流场识别。本发明首先,利用预训练网络对已有数据集进行图像深层特征提取,并不断迭代学习,自动调整网络参数;其次,将预训练网络的全连接层更换成卷积层,并利用迁移学习思想,将预训练得到的权重参数迁移到识别模型中;最后,在网络中引入可变形卷积提取图像特征,并通过密集预测对图像进行逐像素分类,实现流场识别。

    多层深度特征融合的自适应抗遮挡红外目标跟踪方法

    公开(公告)号:CN108665481B

    公开(公告)日:2022-05-31

    申请号:CN201810259132.4

    申请日:2018-03-27

    Abstract: 本发明公开了一种多层深度特征融合的自适应抗遮挡红外目标跟踪方法,首先,获得一系列相同尺寸不同层级的多层深度特征图;然后,根据相关滤波将所述多层深度特征图从时域转换到频域,并且根据快速傅里叶变换进行滤波器训练和响应图计算,再根据层内特征加权融合对多层深度特征图进行合并降维处理,构建出不同层级的特征响应图并且求出最大相关响应值即为目标估计位置;最后,对目标稠密特征进行提取,根据相关滤波获得特征最大响应值,获得通过深度卷积特征所估计的目标中心位置的响应置信度;当所述目标中心位置的响应置信度小于重检测阈值T0时,通过在线目标重检测对获得的目标估计位置进行评估并且根据评估结果对目标的位置进行自适应更新。

    基于拓扑-图切融合优化的多谱段红外图像背景抑制方法

    公开(公告)号:CN108665435B

    公开(公告)日:2021-11-02

    申请号:CN201810015843.7

    申请日:2018-01-08

    Abstract: 本发明公开了一种基于拓扑‑图切融合优化的多谱段红外图像背景抑制方法,分别对多谱段的红外图像进行局部Patch预处理获得预处理后的图像,根据拓扑微分方法对所述预处理后的图像进行强起伏边缘的抑制获得最优扩散系数,根据获得的最优扩散系数与梯度均值滤波相结合分别对单波段图像进行背景抑制,获得若干个单波段杂波抑制后的目标图像;根据尺度区域能量理论模型对所述获得的若干个单波段杂波抑制后的目标图像进行融合,得到多谱段融合的背景抑制结果图像;对所述多谱段融合的背景抑制结果图像进行图切策略优化,消除融合后图像的局部轮廓效应,最终获得背景抑制后的图像。本发明能有效地抑制红外图像中所包含的高灰度级、起伏剧烈的红外背景,并能够突出目标信息。

    基于可变形卷积网络的流场识别方法

    公开(公告)号:CN111027626A

    公开(公告)日:2020-04-17

    申请号:CN201911263125.2

    申请日:2019-12-11

    Abstract: 本发明公开了一种基于可变形卷积网络的流场识别方法,所述通过已有数据集对预训练网络进行预训练;将预训练网络的全连接层更换成卷积层,通过迁移学习思想,将预训练后获得的权重参数迁移到流场识别模型中;通过所述流场识别模型对图像进行逐像素分类实现流场识别。本发明首先,利用预训练网络对已有数据集进行图像深层特征提取,并不断迭代学习,自动调整网络参数;其次,将预训练网络的全连接层更换成卷积层,并利用迁移学习思想,将预训练得到的权重参数迁移到识别模型中;最后,在网络中引入可变形卷积提取图像特征,并通过密集预测对图像进行逐像素分类,实现流场识别。

Patent Agency Ranking