-
公开(公告)号:CN114895263B
公开(公告)日:2024-08-20
申请号:CN202210588894.5
申请日:2022-05-26
Applicant: 西安电子科技大学
IPC: G01S7/36 , G06F18/241 , G06F18/214 , G06N3/0464 , G06N3/084 , G06N3/096
Abstract: 一种基于深度迁移学习的雷达有源干扰信号识别方法,其步骤包括:1、生成雷达有源干扰信号数据集,2、构建雷达有源干扰信号时频图像训练集、验证集和测试集,3、搭建深度迁移学习网络,4、对深度迁移学习网络进行第一次训练,5、对第一次训练后的深度迁移学习网络进行第二次训练,6、利用深度迁移学习网络预测测试集。本发明能够在雷达有源干扰信号样本数量不充足、不易获取雷达有源干扰信号的条件下实现雷达有源干扰信号的准确分类,加快网络训练时的收敛速度,提高雷达有源干扰信号识别的效率,有利于及时选取有效的抗干扰措施,提升雷达的生存率。
-
公开(公告)号:CN115062790A
公开(公告)日:2022-09-16
申请号:CN202210690657.X
申请日:2022-06-17
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于隐马尔可夫模型的Q学习干扰决策方法。其具体步骤包括:生成训练集,训练隐马尔可夫模型,构建雷达工作模式识别器,设置威胁度值,构造判决器,搭建干扰决策系统,生成特征参数矩阵,将其作为干扰决策系统的输入,系统识别雷达工作模式,将识别结果输入到判决器,判断输入的雷达工作模式威胁度是否为所有威胁度中的最小值,若是,干扰过程结束,若否,干扰方通过Q学习算法进行干扰决策。本发明解决现有技术下雷达工作模式识别准确率低与决策依赖先验知识的不足,提高决策的时效性和有效性。
-
公开(公告)号:CN115062790B
公开(公告)日:2024-07-02
申请号:CN202210690657.X
申请日:2022-06-17
Applicant: 西安电子科技大学
Abstract: 本发明公开了一种基于隐马尔可夫模型的Q学习干扰决策方法。其具体步骤包括:生成训练集,训练隐马尔可夫模型,构建雷达工作模式识别器,设置威胁度值,构造判决器,搭建干扰决策系统,生成特征参数矩阵,将其作为干扰决策系统的输入,系统识别雷达工作模式,将识别结果输入到判决器,判断输入的雷达工作模式威胁度是否为所有威胁度中的最小值,若是,干扰过程结束,若否,干扰方通过Q学习算法进行干扰决策。本发明解决现有技术下雷达工作模式识别准确率低与决策依赖先验知识的不足,提高决策的时效性和有效性。
-
公开(公告)号:CN114895263A
公开(公告)日:2022-08-12
申请号:CN202210588894.5
申请日:2022-05-26
Applicant: 西安电子科技大学
Abstract: 一种基于深度迁移学习的雷达有源干扰信号识别方法,其步骤包括:1、生成雷达有源干扰信号数据集,2、构建雷达有源干扰信号时频图像训练集、验证集和测试集,3、搭建深度迁移学习网络,4、对深度迁移学习网络进行第一次训练,5、对第一次训练后的深度迁移学习网络进行第二次训练,6、利用深度迁移学习网络预测测试集。本发明能够在雷达有源干扰信号样本数量不充足、不易获取雷达有源干扰信号的条件下实现雷达有源干扰信号的准确分类,加快网络训练时的收敛速度,提高雷达有源干扰信号识别的效率,有利于及时选取有效的抗干扰措施,提升雷达的生存率。
-
-
-